MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logccv Structured version   Visualization version   GIF version

Theorem logccv 24750
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
logccv (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))

Proof of Theorem logccv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1243 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ+)
21rpred 12117 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
3 simpl2 1245 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ+)
43rpred 12117 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
5 simpl3 1247 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
61rpgt0d 12120 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 0 < 𝐴)
7 ltpnf 12201 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 < +∞)
84, 7syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 < +∞)
9 0xr 10375 . . . . . . . . . . . 12 0 ∈ ℝ*
10 pnfxr 10382 . . . . . . . . . . . 12 +∞ ∈ ℝ*
11 iccssioo 12491 . . . . . . . . . . . 12 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 𝐴𝐵 < +∞)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
129, 10, 11mpanl12 694 . . . . . . . . . . 11 ((0 < 𝐴𝐵 < +∞) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
136, 8, 12syl2anc 580 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
14 ioorp 12500 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1513, 14syl6sseq 3847 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ+)
1615sselda 3798 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ+)
1716relogcld 24710 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (log‘𝑥) ∈ ℝ)
1817renegcld 10749 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(log‘𝑥) ∈ ℝ)
1918fmpttd 6611 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)
20 ax-resscn 10281 . . . . . 6 ℝ ⊆ ℂ
2115resabs1d 5638 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) = (log ↾ (𝐴[,]𝐵)))
22 ssid 3819 . . . . . . . . . . 11 ℂ ⊆ ℂ
23 cncfss 23030 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
2420, 22, 23mp2an 684 . . . . . . . . . 10 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
25 relogcn 24725 . . . . . . . . . 10 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
2624, 25sselii 3795 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
27 rescncf 23028 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℝ+ → ((log ↾ ℝ+) ∈ (ℝ+cn→ℂ) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
2815, 26, 27mpisyl 21 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2921, 28eqeltrrd 2879 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
30 fvres 6430 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → ((log ↾ (𝐴[,]𝐵))‘𝑥) = (log‘𝑥))
3130negeqd 10566 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → -((log ↾ (𝐴[,]𝐵))‘𝑥) = -(log‘𝑥))
3231mpteq2ia 4933 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
3332eqcomi 2808 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥))
3433negfcncf 23050 . . . . . . 7 ((log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3529, 34syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
36 cncffvrn 23029 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3720, 35, 36sylancr 582 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3819, 37mpbird 249 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
39 ioossre 12484 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
40 ltso 10408 . . . . . . . 8 < Or ℝ
41 soss 5251 . . . . . . . 8 ((𝐴(,)𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴(,)𝐵)))
4239, 40, 41mp2 9 . . . . . . 7 < Or (𝐴(,)𝐵)
4342a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or (𝐴(,)𝐵))
44 ioossicc 12508 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4544, 15syl5ss 3809 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ+)
4645sselda 3798 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
4746rprecred 12128 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
4847renegcld 10749 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -(1 / 𝑥) ∈ ℝ)
4948fmpttd 6611 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ)
5049frnd 6263 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ)
51 soss 5251 . . . . . . . 8 (ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ → ( < Or ℝ → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
5250, 40, 51mpisyl 21 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
53 sopo 5250 . . . . . . 7 ( < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5452, 53syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
55 negex 10570 . . . . . . . . 9 -(1 / 𝑥) ∈ V
56 eqid 2799 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5755, 56fnmpti 6233 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵)
58 dffn4 6337 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5957, 58mpbi 222 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
6059a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
6145sselda 3798 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ+)
6261adantrl 708 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑧 ∈ ℝ+)
6362rprecred 12128 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑧) ∈ ℝ)
6445sselda 3798 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
6564adantrr 709 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑦 ∈ ℝ+)
6665rprecred 12128 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑦) ∈ ℝ)
6763, 66ltnegd 10897 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → ((1 / 𝑧) < (1 / 𝑦) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
6865, 62ltrecd 12135 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ (1 / 𝑧) < (1 / 𝑦)))
69 oveq2 6886 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
7069negeqd 10566 . . . . . . . . . . . 12 (𝑥 = 𝑦 → -(1 / 𝑥) = -(1 / 𝑦))
71 negex 10570 . . . . . . . . . . . 12 -(1 / 𝑦) ∈ V
7270, 56, 71fvmpt 6507 . . . . . . . . . . 11 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) = -(1 / 𝑦))
73 oveq2 6886 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (1 / 𝑥) = (1 / 𝑧))
7473negeqd 10566 . . . . . . . . . . . 12 (𝑥 = 𝑧 → -(1 / 𝑥) = -(1 / 𝑧))
75 negex 10570 . . . . . . . . . . . 12 -(1 / 𝑧) ∈ V
7674, 56, 75fvmpt 6507 . . . . . . . . . . 11 (𝑧 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) = -(1 / 𝑧))
7772, 76breqan12d 4859 . . . . . . . . . 10 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7877adantl 474 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7967, 68, 783bitr4d 303 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
8079biimpd 221 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
8180ralrimivva 3152 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
82 soisoi 6806 . . . . . 6 ((( < Or (𝐴(,)𝐵) ∧ < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ∧ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
8343, 54, 60, 81, 82syl22anc 868 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
84 reelprrecn 10316 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8584a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ℝ ∈ {ℝ, ℂ})
86 relogcl 24663 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
8786adantl 474 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
8887recnd 10357 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
8988negcld 10671 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(log‘𝑥) ∈ ℂ)
9055a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(1 / 𝑥) ∈ V)
91 ovexd 6912 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
92 dvrelog 24724 . . . . . . . . 9 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
93 relogf1o 24654 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
94 f1of 6356 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
9593, 94mp1i 13 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+):ℝ+⟶ℝ)
9695feqmptd 6474 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
97 fvres 6430 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
9897mpteq2ia 4933 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9996, 98syl6eq 2849 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
10099oveq2d 6894 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
10192, 100syl5reqr 2848 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
10285, 88, 91, 101dvmptneg 24070 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ -(log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)))
103 eqid 2799 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
104103tgioo2 22934 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
105 iccntr 22952 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1062, 4, 105syl2anc 580 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10785, 89, 90, 102, 15, 104, 103, 106dvmptres2 24066 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
108 isoeq1 6795 . . . . . 6 ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
109107, 108syl 17 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
11083, 109mpbird 249 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
111 simpr 478 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
112 eqid 2799 . . . 4 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
1132, 4, 5, 38, 110, 111, 112dvcvx 24124 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))))
114 ax-1cn 10282 . . . . . . . 8 1 ∈ ℂ
115 elioore 12454 . . . . . . . . . 10 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
116115adantl 474 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
117116recnd 10357 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
118 nncan 10602 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
119114, 117, 118sylancr 582 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
120119oveq1d 6893 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
121120oveq1d 6893 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
122 ioossicc 12508 . . . . . . . 8 (0(,)1) ⊆ (0[,]1)
123122, 111sseldi 3796 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
124 iirev 23056 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
125123, 124syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
126 lincmb01cmp 12569 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
1272, 4, 5, 125, 126syl31anc 1493 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
128121, 127eqeltrrd 2879 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
129 fveq2 6411 . . . . . 6 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → (log‘𝑥) = (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
130129negeqd 10566 . . . . 5 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → -(log‘𝑥) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
131 eqid 2799 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
132 negex 10570 . . . . 5 -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ V
133130, 131, 132fvmpt 6507 . . . 4 (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
134128, 133syl 17 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
1351rpxrd 12118 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
1363rpxrd 12118 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
1372, 4, 5ltled 10475 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
138 lbicc2 12539 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
139135, 136, 137, 138syl3anc 1491 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
140 fveq2 6411 . . . . . . . . . 10 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
141140negeqd 10566 . . . . . . . . 9 (𝑥 = 𝐴 → -(log‘𝑥) = -(log‘𝐴))
142 negex 10570 . . . . . . . . 9 -(log‘𝐴) ∈ V
143141, 131, 142fvmpt 6507 . . . . . . . 8 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
144139, 143syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
145144oveq2d 6894 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = (𝑇 · -(log‘𝐴)))
1461relogcld 24710 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℝ)
147146recnd 10357 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℂ)
148117, 147mulneg2d 10776 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · -(log‘𝐴)) = -(𝑇 · (log‘𝐴)))
149145, 148eqtrd 2833 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = -(𝑇 · (log‘𝐴)))
150 ubicc2 12540 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
151135, 136, 137, 150syl3anc 1491 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
152 fveq2 6411 . . . . . . . . . 10 (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵))
153152negeqd 10566 . . . . . . . . 9 (𝑥 = 𝐵 → -(log‘𝑥) = -(log‘𝐵))
154 negex 10570 . . . . . . . . 9 -(log‘𝐵) ∈ V
155153, 131, 154fvmpt 6507 . . . . . . . 8 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
156151, 155syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
157156oveq2d 6894 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = ((1 − 𝑇) · -(log‘𝐵)))
158 1re 10328 . . . . . . . . 9 1 ∈ ℝ
159 resubcl 10637 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
160158, 116, 159sylancr 582 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℝ)
161160recnd 10357 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℂ)
1623relogcld 24710 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℝ)
163162recnd 10357 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℂ)
164161, 163mulneg2d 10776 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · -(log‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
165157, 164eqtrd 2833 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
166149, 165oveq12d 6896 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
167116, 146remulcld 10359 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℝ)
168167recnd 10357 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℂ)
169160, 162remulcld 10359 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℝ)
170169recnd 10357 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℂ)
171168, 170negdid 10697 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
172166, 171eqtr4d 2836 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
173113, 134, 1723brtr3d 4874 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
174167, 169readdcld 10358 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) ∈ ℝ)
17515, 128sseldd 3799 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℝ+)
176175relogcld 24710 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ ℝ)
177174, 176ltnegd 10897 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ↔ -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))))
178173, 177mpbird 249 1 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  wss 3769  {cpr 4370   class class class wbr 4843  cmpt 4922   Po wpo 5231   Or wor 5232  ran crn 5313  cres 5314   Fn wfn 6096  wf 6097  ontowfo 6099  1-1-ontowf1o 6100  cfv 6101   Isom wiso 6102  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229  +∞cpnf 10360  *cxr 10362   < clt 10363  cle 10364  cmin 10556  -cneg 10557   / cdiv 10976  +crp 12074  (,)cioo 12424  [,]cicc 12427  TopOpenctopn 16397  topGenctg 16413  fldccnfld 20068  intcnt 21150  cnccncf 23007   D cdv 23968  logclog 24642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ioc 12429  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-fac 13314  df-bc 13343  df-hash 13371  df-shft 14148  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-limsup 14543  df-clim 14560  df-rlim 14561  df-sum 14758  df-ef 15134  df-sin 15136  df-cos 15137  df-pi 15139  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-cmp 21519  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-limc 23971  df-dv 23972  df-log 24644
This theorem is referenced by:  amgmlem  25068  amgmwlem  43350
  Copyright terms: Public domain W3C validator