MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logccv Structured version   Visualization version   GIF version

Theorem logccv 25254
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
logccv (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))

Proof of Theorem logccv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ+)
21rpred 12419 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
3 simpl2 1189 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ+)
43rpred 12419 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
5 simpl3 1190 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
61rpgt0d 12422 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 0 < 𝐴)
74ltpnfd 12504 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 < +∞)
8 0xr 10677 . . . . . . . . . . . 12 0 ∈ ℝ*
9 pnfxr 10684 . . . . . . . . . . . 12 +∞ ∈ ℝ*
10 iccssioo 12794 . . . . . . . . . . . 12 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 𝐴𝐵 < +∞)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
118, 9, 10mpanl12 701 . . . . . . . . . . 11 ((0 < 𝐴𝐵 < +∞) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
126, 7, 11syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
13 ioorp 12803 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1412, 13sseqtrdi 3965 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ+)
1514sselda 3915 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ+)
1615relogcld 25214 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (log‘𝑥) ∈ ℝ)
1716renegcld 11056 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(log‘𝑥) ∈ ℝ)
1817fmpttd 6856 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)
19 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
2014resabs1d 5849 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) = (log ↾ (𝐴[,]𝐵)))
21 ssid 3937 . . . . . . . . . . 11 ℂ ⊆ ℂ
22 cncfss 23504 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
2319, 21, 22mp2an 691 . . . . . . . . . 10 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
24 relogcn 25229 . . . . . . . . . 10 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
2523, 24sselii 3912 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
26 rescncf 23502 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℝ+ → ((log ↾ ℝ+) ∈ (ℝ+cn→ℂ) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
2714, 25, 26mpisyl 21 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2820, 27eqeltrrd 2891 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
29 fvres 6664 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → ((log ↾ (𝐴[,]𝐵))‘𝑥) = (log‘𝑥))
3029negeqd 10869 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → -((log ↾ (𝐴[,]𝐵))‘𝑥) = -(log‘𝑥))
3130mpteq2ia 5121 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
3231eqcomi 2807 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥))
3332negfcncf 23528 . . . . . . 7 ((log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3428, 33syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
35 cncffvrn 23503 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3619, 34, 35sylancr 590 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3718, 36mpbird 260 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
38 ioossre 12786 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
39 ltso 10710 . . . . . . . 8 < Or ℝ
40 soss 5457 . . . . . . . 8 ((𝐴(,)𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴(,)𝐵)))
4138, 39, 40mp2 9 . . . . . . 7 < Or (𝐴(,)𝐵)
4241a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or (𝐴(,)𝐵))
43 ioossicc 12811 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4443, 14sstrid 3926 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ+)
4544sselda 3915 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
4645rprecred 12430 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
4746renegcld 11056 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -(1 / 𝑥) ∈ ℝ)
4847fmpttd 6856 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ)
4948frnd 6494 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ)
50 soss 5457 . . . . . . . 8 (ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ → ( < Or ℝ → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
5149, 39, 50mpisyl 21 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
52 sopo 5456 . . . . . . 7 ( < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5351, 52syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
54 negex 10873 . . . . . . . . 9 -(1 / 𝑥) ∈ V
55 eqid 2798 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5654, 55fnmpti 6463 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵)
57 dffn4 6571 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5856, 57mpbi 233 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5958a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
6044sselda 3915 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ+)
6160adantrl 715 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑧 ∈ ℝ+)
6261rprecred 12430 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑧) ∈ ℝ)
6344sselda 3915 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
6463adantrr 716 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑦 ∈ ℝ+)
6564rprecred 12430 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑦) ∈ ℝ)
6662, 65ltnegd 11207 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → ((1 / 𝑧) < (1 / 𝑦) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
6764, 61ltrecd 12437 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ (1 / 𝑧) < (1 / 𝑦)))
68 oveq2 7143 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
6968negeqd 10869 . . . . . . . . . . . 12 (𝑥 = 𝑦 → -(1 / 𝑥) = -(1 / 𝑦))
70 negex 10873 . . . . . . . . . . . 12 -(1 / 𝑦) ∈ V
7169, 55, 70fvmpt 6745 . . . . . . . . . . 11 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) = -(1 / 𝑦))
72 oveq2 7143 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (1 / 𝑥) = (1 / 𝑧))
7372negeqd 10869 . . . . . . . . . . . 12 (𝑥 = 𝑧 → -(1 / 𝑥) = -(1 / 𝑧))
74 negex 10873 . . . . . . . . . . . 12 -(1 / 𝑧) ∈ V
7573, 55, 74fvmpt 6745 . . . . . . . . . . 11 (𝑧 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) = -(1 / 𝑧))
7671, 75breqan12d 5046 . . . . . . . . . 10 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7776adantl 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7866, 67, 773bitr4d 314 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
7978biimpd 232 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
8079ralrimivva 3156 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
81 soisoi 7060 . . . . . 6 ((( < Or (𝐴(,)𝐵) ∧ < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ∧ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
8242, 53, 59, 80, 81syl22anc 837 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
83 reelprrecn 10618 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8483a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ℝ ∈ {ℝ, ℂ})
85 relogcl 25167 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
8685adantl 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
8786recnd 10658 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
8887negcld 10973 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(log‘𝑥) ∈ ℂ)
8954a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(1 / 𝑥) ∈ V)
90 ovexd 7170 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
91 dvrelog 25228 . . . . . . . . 9 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
92 relogf1o 25158 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
93 f1of 6590 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
9492, 93mp1i 13 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+):ℝ+⟶ℝ)
9594feqmptd 6708 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
96 fvres 6664 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
9796mpteq2ia 5121 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9895, 97eqtrdi 2849 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
9998oveq2d 7151 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
10091, 99syl5reqr 2848 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
10184, 87, 90, 100dvmptneg 24569 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ -(log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)))
102 eqid 2798 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
103102tgioo2 23408 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
104 iccntr 23426 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1052, 4, 104syl2anc 587 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10684, 88, 89, 101, 14, 103, 102, 105dvmptres2 24565 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
107 isoeq1 7049 . . . . . 6 ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
108106, 107syl 17 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
10982, 108mpbird 260 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
110 simpr 488 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
111 eqid 2798 . . . 4 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
1122, 4, 5, 37, 109, 110, 111dvcvx 24623 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))))
113 ax-1cn 10584 . . . . . . . 8 1 ∈ ℂ
114 elioore 12756 . . . . . . . . . 10 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
115114adantl 485 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
116115recnd 10658 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
117 nncan 10904 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
118113, 116, 117sylancr 590 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
119118oveq1d 7150 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
120119oveq1d 7150 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
121 ioossicc 12811 . . . . . . . 8 (0(,)1) ⊆ (0[,]1)
122121, 110sseldi 3913 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
123 iirev 23534 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
124122, 123syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
125 lincmb01cmp 12873 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
1262, 4, 5, 124, 125syl31anc 1370 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
127120, 126eqeltrrd 2891 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
128 fveq2 6645 . . . . . 6 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → (log‘𝑥) = (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
129128negeqd 10869 . . . . 5 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → -(log‘𝑥) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
130 eqid 2798 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
131 negex 10873 . . . . 5 -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ V
132129, 130, 131fvmpt 6745 . . . 4 (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
133127, 132syl 17 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
1341rpxrd 12420 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
1353rpxrd 12420 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
1362, 4, 5ltled 10777 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
137 lbicc2 12842 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138134, 135, 136, 137syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
139 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
140139negeqd 10869 . . . . . . . . 9 (𝑥 = 𝐴 → -(log‘𝑥) = -(log‘𝐴))
141 negex 10873 . . . . . . . . 9 -(log‘𝐴) ∈ V
142140, 130, 141fvmpt 6745 . . . . . . . 8 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
143138, 142syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
144143oveq2d 7151 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = (𝑇 · -(log‘𝐴)))
1451relogcld 25214 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℝ)
146145recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℂ)
147116, 146mulneg2d 11083 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · -(log‘𝐴)) = -(𝑇 · (log‘𝐴)))
148144, 147eqtrd 2833 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = -(𝑇 · (log‘𝐴)))
149 ubicc2 12843 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
150134, 135, 136, 149syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
151 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵))
152151negeqd 10869 . . . . . . . . 9 (𝑥 = 𝐵 → -(log‘𝑥) = -(log‘𝐵))
153 negex 10873 . . . . . . . . 9 -(log‘𝐵) ∈ V
154152, 130, 153fvmpt 6745 . . . . . . . 8 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
155150, 154syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
156155oveq2d 7151 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = ((1 − 𝑇) · -(log‘𝐵)))
157 1re 10630 . . . . . . . . 9 1 ∈ ℝ
158 resubcl 10939 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
159157, 115, 158sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℝ)
160159recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℂ)
1613relogcld 25214 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℝ)
162161recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℂ)
163160, 162mulneg2d 11083 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · -(log‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
164156, 163eqtrd 2833 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
165148, 164oveq12d 7153 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
166115, 145remulcld 10660 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℝ)
167166recnd 10658 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℂ)
168159, 161remulcld 10660 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℝ)
169168recnd 10658 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℂ)
170167, 169negdid 10999 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
171165, 170eqtr4d 2836 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
172112, 133, 1713brtr3d 5061 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
173166, 168readdcld 10659 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) ∈ ℝ)
17414, 127sseldd 3916 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℝ+)
175174relogcld 25214 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ ℝ)
176173, 175ltnegd 11207 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ↔ -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))))
177172, 176mpbird 260 1 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  {cpr 4527   class class class wbr 5030  cmpt 5110   Po wpo 5436   Or wor 5437  ran crn 5520  cres 5521   Fn wfn 6319  wf 6320  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324   Isom wiso 6325  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  +crp 12377  (,)cioo 12726  [,]cicc 12729  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  intcnt 21622  cnccncf 23481   D cdv 24466  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  amgmlem  25575  amgmwlem  45330
  Copyright terms: Public domain W3C validator