MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logccv Structured version   Visualization version   GIF version

Theorem logccv 26579
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
logccv (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))

Proof of Theorem logccv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ+)
21rpred 13002 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
3 simpl2 1193 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ+)
43rpred 13002 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
5 simpl3 1194 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
61rpgt0d 13005 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 0 < 𝐴)
74ltpnfd 13088 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 < +∞)
8 0xr 11228 . . . . . . . . . . . 12 0 ∈ ℝ*
9 pnfxr 11235 . . . . . . . . . . . 12 +∞ ∈ ℝ*
10 iccssioo 13383 . . . . . . . . . . . 12 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 𝐴𝐵 < +∞)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
118, 9, 10mpanl12 702 . . . . . . . . . . 11 ((0 < 𝐴𝐵 < +∞) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
126, 7, 11syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
13 ioorp 13393 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1412, 13sseqtrdi 3990 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ+)
1514sselda 3949 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ+)
1615relogcld 26539 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (log‘𝑥) ∈ ℝ)
1716renegcld 11612 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(log‘𝑥) ∈ ℝ)
1817fmpttd 7090 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)
19 ax-resscn 11132 . . . . . 6 ℝ ⊆ ℂ
2014resabs1d 5982 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) = (log ↾ (𝐴[,]𝐵)))
21 ssid 3972 . . . . . . . . . . 11 ℂ ⊆ ℂ
22 cncfss 24799 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
2319, 21, 22mp2an 692 . . . . . . . . . 10 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
24 relogcn 26554 . . . . . . . . . 10 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
2523, 24sselii 3946 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
26 rescncf 24797 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℝ+ → ((log ↾ ℝ+) ∈ (ℝ+cn→ℂ) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
2714, 25, 26mpisyl 21 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2820, 27eqeltrrd 2830 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
29 fvres 6880 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → ((log ↾ (𝐴[,]𝐵))‘𝑥) = (log‘𝑥))
3029negeqd 11422 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → -((log ↾ (𝐴[,]𝐵))‘𝑥) = -(log‘𝑥))
3130mpteq2ia 5205 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
3231eqcomi 2739 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥))
3332negfcncf 24824 . . . . . . 7 ((log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3428, 33syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
35 cncfcdm 24798 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3619, 34, 35sylancr 587 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3718, 36mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
38 ioossre 13375 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
39 ltso 11261 . . . . . . . 8 < Or ℝ
40 soss 5569 . . . . . . . 8 ((𝐴(,)𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴(,)𝐵)))
4138, 39, 40mp2 9 . . . . . . 7 < Or (𝐴(,)𝐵)
4241a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or (𝐴(,)𝐵))
43 ioossicc 13401 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4443, 14sstrid 3961 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ+)
4544sselda 3949 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
4645rprecred 13013 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
4746renegcld 11612 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -(1 / 𝑥) ∈ ℝ)
4847fmpttd 7090 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ)
4948frnd 6699 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ)
50 soss 5569 . . . . . . . 8 (ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ → ( < Or ℝ → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
5149, 39, 50mpisyl 21 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
52 sopo 5568 . . . . . . 7 ( < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5351, 52syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
54 negex 11426 . . . . . . . . 9 -(1 / 𝑥) ∈ V
55 eqid 2730 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5654, 55fnmpti 6664 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵)
57 dffn4 6781 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5856, 57mpbi 230 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5958a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
6044sselda 3949 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ+)
6160adantrl 716 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑧 ∈ ℝ+)
6261rprecred 13013 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑧) ∈ ℝ)
6344sselda 3949 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
6463adantrr 717 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑦 ∈ ℝ+)
6564rprecred 13013 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑦) ∈ ℝ)
6662, 65ltnegd 11763 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → ((1 / 𝑧) < (1 / 𝑦) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
6764, 61ltrecd 13020 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ (1 / 𝑧) < (1 / 𝑦)))
68 oveq2 7398 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
6968negeqd 11422 . . . . . . . . . . . 12 (𝑥 = 𝑦 → -(1 / 𝑥) = -(1 / 𝑦))
70 negex 11426 . . . . . . . . . . . 12 -(1 / 𝑦) ∈ V
7169, 55, 70fvmpt 6971 . . . . . . . . . . 11 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) = -(1 / 𝑦))
72 oveq2 7398 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (1 / 𝑥) = (1 / 𝑧))
7372negeqd 11422 . . . . . . . . . . . 12 (𝑥 = 𝑧 → -(1 / 𝑥) = -(1 / 𝑧))
74 negex 11426 . . . . . . . . . . . 12 -(1 / 𝑧) ∈ V
7573, 55, 74fvmpt 6971 . . . . . . . . . . 11 (𝑧 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) = -(1 / 𝑧))
7671, 75breqan12d 5126 . . . . . . . . . 10 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7776adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7866, 67, 773bitr4d 311 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
7978biimpd 229 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
8079ralrimivva 3181 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
81 soisoi 7306 . . . . . 6 ((( < Or (𝐴(,)𝐵) ∧ < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ∧ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
8242, 53, 59, 80, 81syl22anc 838 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
83 reelprrecn 11167 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8483a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ℝ ∈ {ℝ, ℂ})
85 relogcl 26491 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
8685adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
8786recnd 11209 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
8887negcld 11527 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(log‘𝑥) ∈ ℂ)
8954a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(1 / 𝑥) ∈ V)
90 ovexd 7425 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
91 relogf1o 26482 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
92 f1of 6803 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
9391, 92mp1i 13 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+):ℝ+⟶ℝ)
9493feqmptd 6932 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
95 fvres 6880 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
9695mpteq2ia 5205 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9794, 96eqtrdi 2781 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
9897oveq2d 7406 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
99 dvrelog 26553 . . . . . . . . 9 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
10098, 99eqtr3di 2780 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
10184, 87, 90, 100dvmptneg 25877 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ -(log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)))
102 tgioo4 24700 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103 eqid 2730 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
104 iccntr 24717 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1052, 4, 104syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10684, 88, 89, 101, 14, 102, 103, 105dvmptres2 25873 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
107 isoeq1 7295 . . . . . 6 ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
108106, 107syl 17 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
10982, 108mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
110 simpr 484 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
111 eqid 2730 . . . 4 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
1122, 4, 5, 37, 109, 110, 111dvcvx 25932 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))))
113 ax-1cn 11133 . . . . . . . 8 1 ∈ ℂ
114 elioore 13343 . . . . . . . . . 10 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
115114adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
116115recnd 11209 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
117 nncan 11458 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
118113, 116, 117sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
119118oveq1d 7405 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
120119oveq1d 7405 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
121 ioossicc 13401 . . . . . . . 8 (0(,)1) ⊆ (0[,]1)
122121, 110sselid 3947 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
123 iirev 24830 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
124122, 123syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
125 lincmb01cmp 13463 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
1262, 4, 5, 124, 125syl31anc 1375 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
127120, 126eqeltrrd 2830 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
128 fveq2 6861 . . . . . 6 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → (log‘𝑥) = (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
129128negeqd 11422 . . . . 5 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → -(log‘𝑥) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
130 eqid 2730 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
131 negex 11426 . . . . 5 -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ V
132129, 130, 131fvmpt 6971 . . . 4 (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
133127, 132syl 17 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
1341rpxrd 13003 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
1353rpxrd 13003 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
1362, 4, 5ltled 11329 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
137 lbicc2 13432 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138134, 135, 136, 137syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
139 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
140139negeqd 11422 . . . . . . . . 9 (𝑥 = 𝐴 → -(log‘𝑥) = -(log‘𝐴))
141 negex 11426 . . . . . . . . 9 -(log‘𝐴) ∈ V
142140, 130, 141fvmpt 6971 . . . . . . . 8 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
143138, 142syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
144143oveq2d 7406 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = (𝑇 · -(log‘𝐴)))
1451relogcld 26539 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℝ)
146145recnd 11209 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℂ)
147116, 146mulneg2d 11639 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · -(log‘𝐴)) = -(𝑇 · (log‘𝐴)))
148144, 147eqtrd 2765 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = -(𝑇 · (log‘𝐴)))
149 ubicc2 13433 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
150134, 135, 136, 149syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
151 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵))
152151negeqd 11422 . . . . . . . . 9 (𝑥 = 𝐵 → -(log‘𝑥) = -(log‘𝐵))
153 negex 11426 . . . . . . . . 9 -(log‘𝐵) ∈ V
154152, 130, 153fvmpt 6971 . . . . . . . 8 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
155150, 154syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
156155oveq2d 7406 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = ((1 − 𝑇) · -(log‘𝐵)))
157 1re 11181 . . . . . . . . 9 1 ∈ ℝ
158 resubcl 11493 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
159157, 115, 158sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℝ)
160159recnd 11209 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℂ)
1613relogcld 26539 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℝ)
162161recnd 11209 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℂ)
163160, 162mulneg2d 11639 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · -(log‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
164156, 163eqtrd 2765 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
165148, 164oveq12d 7408 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
166115, 145remulcld 11211 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℝ)
167166recnd 11209 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℂ)
168159, 161remulcld 11211 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℝ)
169168recnd 11209 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℂ)
170167, 169negdid 11553 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
171165, 170eqtr4d 2768 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
172112, 133, 1713brtr3d 5141 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
173166, 168readdcld 11210 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) ∈ ℝ)
17414, 127sseldd 3950 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℝ+)
175174relogcld 26539 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ ℝ)
176173, 175ltnegd 11763 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ↔ -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))))
177172, 176mpbird 257 1 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191   Po wpo 5547   Or wor 5548  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  +crp 12958  (,)cioo 13313  [,]cicc 13316  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911  cnccncf 24776   D cdv 25771  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472
This theorem is referenced by:  amgmlem  26907  amgmwlem  49795
  Copyright terms: Public domain W3C validator