Step | Hyp | Ref
| Expression |
1 | | simpl1 1243 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈
ℝ+) |
2 | 1 | rpred 12117 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈
ℝ) |
3 | | simpl2 1245 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈
ℝ+) |
4 | 3 | rpred 12117 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈
ℝ) |
5 | | simpl3 1247 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵) |
6 | 1 | rpgt0d 12120 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 0 <
𝐴) |
7 | | ltpnf 12201 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) |
8 | 4, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 < +∞) |
9 | | 0xr 10375 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
10 | | pnfxr 10382 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
11 | | iccssioo 12491 |
. . . . . . . . . . . 12
⊢ (((0
∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0
< 𝐴 ∧ 𝐵 < +∞)) → (𝐴[,]𝐵) ⊆ (0(,)+∞)) |
12 | 9, 10, 11 | mpanl12 694 |
. . . . . . . . . . 11
⊢ ((0 <
𝐴 ∧ 𝐵 < +∞) → (𝐴[,]𝐵) ⊆ (0(,)+∞)) |
13 | 6, 8, 12 | syl2anc 580 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ (0(,)+∞)) |
14 | | ioorp 12500 |
. . . . . . . . . 10
⊢
(0(,)+∞) = ℝ+ |
15 | 13, 14 | syl6sseq 3847 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆
ℝ+) |
16 | 15 | sselda 3798 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ+) |
17 | 16 | relogcld 24710 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (log‘𝑥) ∈ ℝ) |
18 | 17 | renegcld 10749 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(log‘𝑥) ∈ ℝ) |
19 | 18 | fmpttd 6611 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ) |
20 | | ax-resscn 10281 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
21 | 15 | resabs1d 5638 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log
↾ ℝ+) ↾ (𝐴[,]𝐵)) = (log ↾ (𝐴[,]𝐵))) |
22 | | ssid 3819 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
23 | | cncfss 23030 |
. . . . . . . . . . 11
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ)) |
24 | 20, 22, 23 | mp2an 684 |
. . . . . . . . . 10
⊢
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ) |
25 | | relogcn 24725 |
. . . . . . . . . 10
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℝ) |
26 | 24, 25 | sselii 3795 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℂ) |
27 | | rescncf 23028 |
. . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ ℝ+ → ((log
↾ ℝ+) ∈ (ℝ+–cn→ℂ) → ((log ↾
ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
28 | 15, 26, 27 | mpisyl 21 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log
↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
29 | 21, 28 | eqeltrrd 2879 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
30 | | fvres 6430 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴[,]𝐵) → ((log ↾ (𝐴[,]𝐵))‘𝑥) = (log‘𝑥)) |
31 | 30 | negeqd 10566 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴[,]𝐵) → -((log ↾ (𝐴[,]𝐵))‘𝑥) = -(log‘𝑥)) |
32 | 31 | mpteq2ia 4933 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) |
33 | 32 | eqcomi 2808 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) |
34 | 33 | negfcncf 23050 |
. . . . . . 7
⊢ ((log
↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
35 | 29, 34 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
36 | | cncffvrn 23029 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)) |
37 | 20, 35, 36 | sylancr 582 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)) |
38 | 19, 37 | mpbird 249 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
39 | | ioossre 12484 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ |
40 | | ltso 10408 |
. . . . . . . 8
⊢ < Or
ℝ |
41 | | soss 5251 |
. . . . . . . 8
⊢ ((𝐴(,)𝐵) ⊆ ℝ → ( < Or ℝ
→ < Or (𝐴(,)𝐵))) |
42 | 39, 40, 41 | mp2 9 |
. . . . . . 7
⊢ < Or
(𝐴(,)𝐵) |
43 | 42 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or
(𝐴(,)𝐵)) |
44 | | ioossicc 12508 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
45 | 44, 15 | syl5ss 3809 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆
ℝ+) |
46 | 45 | sselda 3798 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+) |
47 | 46 | rprecred 12128 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ) |
48 | 47 | renegcld 10749 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -(1 / 𝑥) ∈ ℝ) |
49 | 48 | fmpttd 6611 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ) |
50 | 49 | frnd 6263 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ) |
51 | | soss 5251 |
. . . . . . . 8
⊢ (ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ → ( < Or ℝ
→ < Or ran (𝑥
∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
52 | 50, 40, 51 | mpisyl 21 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or
ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
53 | | sopo 5250 |
. . . . . . 7
⊢ ( < Or
ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
54 | 52, 53 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Po
ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
55 | | negex 10570 |
. . . . . . . . 9
⊢ -(1 /
𝑥) ∈
V |
56 | | eqid 2799 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) |
57 | 55, 56 | fnmpti 6233 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) |
58 | | dffn4 6337 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
59 | 57, 58 | mpbi 222 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) |
60 | 59 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
61 | 45 | sselda 3798 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ+) |
62 | 61 | adantrl 708 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑧 ∈ ℝ+) |
63 | 62 | rprecred 12128 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑧) ∈ ℝ) |
64 | 45 | sselda 3798 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+) |
65 | 64 | adantrr 709 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑦 ∈ ℝ+) |
66 | 65 | rprecred 12128 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑦) ∈ ℝ) |
67 | 63, 66 | ltnegd 10897 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → ((1 / 𝑧) < (1 / 𝑦) ↔ -(1 / 𝑦) < -(1 / 𝑧))) |
68 | 65, 62 | ltrecd 12135 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ (1 / 𝑧) < (1 / 𝑦))) |
69 | | oveq2 6886 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦)) |
70 | 69 | negeqd 10566 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → -(1 / 𝑥) = -(1 / 𝑦)) |
71 | | negex 10570 |
. . . . . . . . . . . 12
⊢ -(1 /
𝑦) ∈
V |
72 | 70, 56, 71 | fvmpt 6507 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) = -(1 / 𝑦)) |
73 | | oveq2 6886 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (1 / 𝑥) = (1 / 𝑧)) |
74 | 73 | negeqd 10566 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → -(1 / 𝑥) = -(1 / 𝑧)) |
75 | | negex 10570 |
. . . . . . . . . . . 12
⊢ -(1 /
𝑧) ∈
V |
76 | 74, 56, 75 | fvmpt 6507 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) = -(1 / 𝑧)) |
77 | 72, 76 | breqan12d 4859 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧))) |
78 | 77 | adantl 474 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧))) |
79 | 67, 68, 78 | 3bitr4d 303 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧))) |
80 | 79 | biimpd 221 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧))) |
81 | 80 | ralrimivva 3152 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧))) |
82 | | soisoi 6806 |
. . . . . 6
⊢ ((( <
Or (𝐴(,)𝐵) ∧ < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ∧ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
83 | 43, 54, 60, 81, 82 | syl22anc 868 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
84 | | reelprrecn 10316 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
85 | 84 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ℝ
∈ {ℝ, ℂ}) |
86 | | relogcl 24663 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
87 | 86 | adantl 474 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℝ) |
88 | 87 | recnd 10357 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℂ) |
89 | 88 | negcld 10671 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ -(log‘𝑥)
∈ ℂ) |
90 | 55 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ -(1 / 𝑥) ∈
V) |
91 | | ovexd 6912 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
V) |
92 | | dvrelog 24724 |
. . . . . . . . 9
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) |
93 | | relogf1o 24654 |
. . . . . . . . . . . . 13
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
94 | | f1of 6356 |
. . . . . . . . . . . . 13
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
95 | 93, 94 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾
ℝ+):ℝ+⟶ℝ) |
96 | 95 | feqmptd 6474 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑥))) |
97 | | fvres 6430 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) |
98 | 97 | mpteq2ia 4933 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) |
99 | 96, 98 | syl6eq 2849 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥))) |
100 | 99 | oveq2d 6894 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) |
101 | 92, 100 | syl5reqr 2848 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) |
102 | 85, 88, 91, 101 | dvmptneg 24070 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈
ℝ+ ↦ -(log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ -(1 /
𝑥))) |
103 | | eqid 2799 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
104 | 103 | tgioo2 22934 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
105 | | iccntr 22952 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
106 | 2, 4, 105 | syl2anc 580 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
107 | 85, 89, 90, 102, 15, 104, 103, 106 | dvmptres2 24066 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
108 | | isoeq1 6795 |
. . . . . 6
⊢ ((ℝ
D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))) |
109 | 107, 108 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
((ℝ D (𝑥 ∈
(𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))) |
110 | 83, 109 | mpbird 249 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
111 | | simpr 478 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
(0(,)1)) |
112 | | eqid 2799 |
. . . 4
⊢ ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) |
113 | 2, 4, 5, 38, 110, 111, 112 | dvcvx 24124 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)))) |
114 | | ax-1cn 10282 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
115 | | elioore 12454 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (0(,)1) → 𝑇 ∈
ℝ) |
116 | 115 | adantl 474 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
ℝ) |
117 | 116 | recnd 10357 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
ℂ) |
118 | | nncan 10602 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇) |
119 | 114, 117,
118 | sylancr 582 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− (1 − 𝑇)) =
𝑇) |
120 | 119 | oveq1d 6893 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− (1 − 𝑇))
· 𝐴) = (𝑇 · 𝐴)) |
121 | 120 | oveq1d 6893 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1
− (1 − 𝑇))
· 𝐴) + ((1 −
𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) |
122 | | ioossicc 12508 |
. . . . . . . 8
⊢ (0(,)1)
⊆ (0[,]1) |
123 | 122, 111 | sseldi 3796 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
(0[,]1)) |
124 | | iirev 23056 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → (1
− 𝑇) ∈
(0[,]1)) |
125 | 123, 124 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− 𝑇) ∈
(0[,]1)) |
126 | | lincmb01cmp 12569 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1
− 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵)) |
127 | 2, 4, 5, 125, 126 | syl31anc 1493 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1
− (1 − 𝑇))
· 𝐴) + ((1 −
𝑇) · 𝐵)) ∈ (𝐴[,]𝐵)) |
128 | 121, 127 | eqeltrrd 2879 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵)) |
129 | | fveq2 6411 |
. . . . . 6
⊢ (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → (log‘𝑥) = (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
130 | 129 | negeqd 10566 |
. . . . 5
⊢ (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → -(log‘𝑥) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
131 | | eqid 2799 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) |
132 | | negex 10570 |
. . . . 5
⊢
-(log‘((𝑇
· 𝐴) + ((1 −
𝑇) · 𝐵))) ∈ V |
133 | 130, 131,
132 | fvmpt 6507 |
. . . 4
⊢ (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
134 | 128, 133 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
135 | 1 | rpxrd 12118 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈
ℝ*) |
136 | 3 | rpxrd 12118 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈
ℝ*) |
137 | 2, 4, 5 | ltled 10475 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ≤ 𝐵) |
138 | | lbicc2 12539 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
139 | 135, 136,
137, 138 | syl3anc 1491 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵)) |
140 | | fveq2 6411 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴)) |
141 | 140 | negeqd 10566 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → -(log‘𝑥) = -(log‘𝐴)) |
142 | | negex 10570 |
. . . . . . . . 9
⊢
-(log‘𝐴)
∈ V |
143 | 141, 131,
142 | fvmpt 6507 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴)) |
144 | 139, 143 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴)) |
145 | 144 | oveq2d 6894 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = (𝑇 · -(log‘𝐴))) |
146 | 1 | relogcld 24710 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐴) ∈
ℝ) |
147 | 146 | recnd 10357 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐴) ∈
ℂ) |
148 | 117, 147 | mulneg2d 10776 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · -(log‘𝐴)) = -(𝑇 · (log‘𝐴))) |
149 | 145, 148 | eqtrd 2833 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = -(𝑇 · (log‘𝐴))) |
150 | | ubicc2 12540 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
151 | 135, 136,
137, 150 | syl3anc 1491 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵)) |
152 | | fveq2 6411 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) |
153 | 152 | negeqd 10566 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → -(log‘𝑥) = -(log‘𝐵)) |
154 | | negex 10570 |
. . . . . . . . 9
⊢
-(log‘𝐵)
∈ V |
155 | 153, 131,
154 | fvmpt 6507 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵)) |
156 | 151, 155 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵)) |
157 | 156 | oveq2d 6894 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = ((1 − 𝑇) · -(log‘𝐵))) |
158 | | 1re 10328 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
159 | | resubcl 10637 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
160 | 158, 116,
159 | sylancr 582 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− 𝑇) ∈
ℝ) |
161 | 160 | recnd 10357 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− 𝑇) ∈
ℂ) |
162 | 3 | relogcld 24710 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐵) ∈
ℝ) |
163 | 162 | recnd 10357 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐵) ∈
ℂ) |
164 | 161, 163 | mulneg2d 10776 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) ·
-(log‘𝐵)) = -((1
− 𝑇) ·
(log‘𝐵))) |
165 | 157, 164 | eqtrd 2833 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = -((1 − 𝑇) · (log‘𝐵))) |
166 | 149, 165 | oveq12d 6896 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵)))) |
167 | 116, 146 | remulcld 10359 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈
ℝ) |
168 | 167 | recnd 10357 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈
ℂ) |
169 | 160, 162 | remulcld 10359 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) ·
(log‘𝐵)) ∈
ℝ) |
170 | 169 | recnd 10357 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) ·
(log‘𝐵)) ∈
ℂ) |
171 | 168, 170 | negdid 10697 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵)))) |
172 | 166, 171 | eqtr4d 2836 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))) |
173 | 113, 134,
172 | 3brtr3d 4874 |
. 2
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
-(log‘((𝑇 ·
𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))) |
174 | 167, 169 | readdcld 10358 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) ∈
ℝ) |
175 | 15, 128 | sseldd 3799 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈
ℝ+) |
176 | 175 | relogcld 24710 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘((𝑇 ·
𝐴) + ((1 − 𝑇) · 𝐵))) ∈ ℝ) |
177 | 174, 176 | ltnegd 10897 |
. 2
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ↔ -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))) |
178 | 173, 177 | mpbird 249 |
1
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |