MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logccv Structured version   Visualization version   GIF version

Theorem logccv 26588
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
logccv (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))

Proof of Theorem logccv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ+)
21rpred 12955 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ)
3 simpl2 1193 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ+)
43rpred 12955 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ)
5 simpl3 1194 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵)
61rpgt0d 12958 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 0 < 𝐴)
74ltpnfd 13041 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 < +∞)
8 0xr 11181 . . . . . . . . . . . 12 0 ∈ ℝ*
9 pnfxr 11188 . . . . . . . . . . . 12 +∞ ∈ ℝ*
10 iccssioo 13336 . . . . . . . . . . . 12 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 𝐴𝐵 < +∞)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
118, 9, 10mpanl12 702 . . . . . . . . . . 11 ((0 < 𝐴𝐵 < +∞) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
126, 7, 11syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ (0(,)+∞))
13 ioorp 13346 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1412, 13sseqtrdi 3978 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ ℝ+)
1514sselda 3937 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ+)
1615relogcld 26548 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (log‘𝑥) ∈ ℝ)
1716renegcld 11565 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(log‘𝑥) ∈ ℝ)
1817fmpttd 7053 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)
19 ax-resscn 11085 . . . . . 6 ℝ ⊆ ℂ
2014resabs1d 5963 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) = (log ↾ (𝐴[,]𝐵)))
21 ssid 3960 . . . . . . . . . . 11 ℂ ⊆ ℂ
22 cncfss 24808 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
2319, 21, 22mp2an 692 . . . . . . . . . 10 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
24 relogcn 26563 . . . . . . . . . 10 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
2523, 24sselii 3934 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℂ)
26 rescncf 24806 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℝ+ → ((log ↾ ℝ+) ∈ (ℝ+cn→ℂ) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
2714, 25, 26mpisyl 21 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log ↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2820, 27eqeltrrd 2829 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
29 fvres 6845 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → ((log ↾ (𝐴[,]𝐵))‘𝑥) = (log‘𝑥))
3029negeqd 11375 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → -((log ↾ (𝐴[,]𝐵))‘𝑥) = -(log‘𝑥))
3130mpteq2ia 5190 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
3231eqcomi 2738 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥))
3332negfcncf 24833 . . . . . . 7 ((log ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3428, 33syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
35 cncfcdm 24807 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3619, 34, 35sylancr 587 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ))
3718, 36mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
38 ioossre 13328 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
39 ltso 11214 . . . . . . . 8 < Or ℝ
40 soss 5551 . . . . . . . 8 ((𝐴(,)𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴(,)𝐵)))
4138, 39, 40mp2 9 . . . . . . 7 < Or (𝐴(,)𝐵)
4241a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or (𝐴(,)𝐵))
43 ioossicc 13354 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4443, 14sstrid 3949 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆ ℝ+)
4544sselda 3937 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
4645rprecred 12966 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ)
4746renegcld 11565 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -(1 / 𝑥) ∈ ℝ)
4847fmpttd 7053 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ)
4948frnd 6664 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ)
50 soss 5551 . . . . . . . 8 (ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ → ( < Or ℝ → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
5149, 39, 50mpisyl 21 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
52 sopo 5550 . . . . . . 7 ( < Or ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5351, 52syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
54 negex 11379 . . . . . . . . 9 -(1 / 𝑥) ∈ V
55 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5654, 55fnmpti 6629 . . . . . . . 8 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵)
57 dffn4 6746 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
5856, 57mpbi 230 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))
5958a1i 11 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
6044sselda 3937 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ+)
6160adantrl 716 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑧 ∈ ℝ+)
6261rprecred 12966 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑧) ∈ ℝ)
6344sselda 3937 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
6463adantrr 717 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑦 ∈ ℝ+)
6564rprecred 12966 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑦) ∈ ℝ)
6662, 65ltnegd 11716 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → ((1 / 𝑧) < (1 / 𝑦) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
6764, 61ltrecd 12973 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ (1 / 𝑧) < (1 / 𝑦)))
68 oveq2 7361 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
6968negeqd 11375 . . . . . . . . . . . 12 (𝑥 = 𝑦 → -(1 / 𝑥) = -(1 / 𝑦))
70 negex 11379 . . . . . . . . . . . 12 -(1 / 𝑦) ∈ V
7169, 55, 70fvmpt 6934 . . . . . . . . . . 11 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) = -(1 / 𝑦))
72 oveq2 7361 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (1 / 𝑥) = (1 / 𝑧))
7372negeqd 11375 . . . . . . . . . . . 12 (𝑥 = 𝑧 → -(1 / 𝑥) = -(1 / 𝑧))
74 negex 11379 . . . . . . . . . . . 12 -(1 / 𝑧) ∈ V
7573, 55, 74fvmpt 6934 . . . . . . . . . . 11 (𝑧 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) = -(1 / 𝑧))
7671, 75breqan12d 5111 . . . . . . . . . 10 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7776adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧)))
7866, 67, 773bitr4d 311 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
7978biimpd 229 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
8079ralrimivva 3172 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))
81 soisoi 7269 . . . . . 6 ((( < Or (𝐴(,)𝐵) ∧ < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ∧ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
8242, 53, 59, 80, 81syl22anc 838 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
83 reelprrecn 11120 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8483a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ℝ ∈ {ℝ, ℂ})
85 relogcl 26500 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
8685adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
8786recnd 11162 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
8887negcld 11480 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(log‘𝑥) ∈ ℂ)
8954a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → -(1 / 𝑥) ∈ V)
90 ovexd 7388 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
91 relogf1o 26491 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
92 f1of 6768 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
9391, 92mp1i 13 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+):ℝ+⟶ℝ)
9493feqmptd 6895 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
95 fvres 6845 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
9695mpteq2ia 5190 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9794, 96eqtrdi 2780 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
9897oveq2d 7369 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
99 dvrelog 26562 . . . . . . . . 9 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
10098, 99eqtr3di 2779 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
10184, 87, 90, 100dvmptneg 25886 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ ℝ+ ↦ -(log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)))
102 tgioo4 24709 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103 eqid 2729 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
104 iccntr 24726 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1052, 4, 104syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10684, 88, 89, 101, 14, 102, 103, 105dvmptres2 25882 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))
107 isoeq1 7258 . . . . . 6 ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
108106, 107syl 17 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))))
10982, 108mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))
110 simpr 484 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0(,)1))
111 eqid 2729 . . . 4 ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
1122, 4, 5, 37, 109, 110, 111dvcvx 25941 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))))
113 ax-1cn 11086 . . . . . . . 8 1 ∈ ℂ
114 elioore 13296 . . . . . . . . . 10 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
115114adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℝ)
116115recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ ℂ)
117 nncan 11411 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
118113, 116, 117sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − (1 − 𝑇)) = 𝑇)
119118oveq1d 7368 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − (1 − 𝑇)) · 𝐴) = (𝑇 · 𝐴))
120119oveq1d 7368 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
121 ioossicc 13354 . . . . . . . 8 (0(,)1) ⊆ (0[,]1)
122121, 110sselid 3935 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈ (0[,]1))
123 iirev 24839 . . . . . . 7 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
124122, 123syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ (0[,]1))
125 lincmb01cmp 13416 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
1262, 4, 5, 124, 125syl31anc 1375 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1 − (1 − 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
127120, 126eqeltrrd 2829 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵))
128 fveq2 6826 . . . . . 6 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → (log‘𝑥) = (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
129128negeqd 11375 . . . . 5 (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → -(log‘𝑥) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
130 eqid 2729 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))
131 negex 11379 . . . . 5 -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ V
132129, 130, 131fvmpt 6934 . . . 4 (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
133127, 132syl 17 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
1341rpxrd 12956 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ ℝ*)
1353rpxrd 12956 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ ℝ*)
1362, 4, 5ltled 11282 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴𝐵)
137 lbicc2 13385 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138134, 135, 136, 137syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵))
139 fveq2 6826 . . . . . . . . . 10 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
140139negeqd 11375 . . . . . . . . 9 (𝑥 = 𝐴 → -(log‘𝑥) = -(log‘𝐴))
141 negex 11379 . . . . . . . . 9 -(log‘𝐴) ∈ V
142140, 130, 141fvmpt 6934 . . . . . . . 8 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
143138, 142syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴))
144143oveq2d 7369 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = (𝑇 · -(log‘𝐴)))
1451relogcld 26548 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℝ)
146145recnd 11162 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐴) ∈ ℂ)
147116, 146mulneg2d 11592 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · -(log‘𝐴)) = -(𝑇 · (log‘𝐴)))
148144, 147eqtrd 2764 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = -(𝑇 · (log‘𝐴)))
149 ubicc2 13386 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
150134, 135, 136, 149syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵))
151 fveq2 6826 . . . . . . . . . 10 (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵))
152151negeqd 11375 . . . . . . . . 9 (𝑥 = 𝐵 → -(log‘𝑥) = -(log‘𝐵))
153 negex 11379 . . . . . . . . 9 -(log‘𝐵) ∈ V
154152, 130, 153fvmpt 6934 . . . . . . . 8 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
155150, 154syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵))
156155oveq2d 7369 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = ((1 − 𝑇) · -(log‘𝐵)))
157 1re 11134 . . . . . . . . 9 1 ∈ ℝ
158 resubcl 11446 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
159157, 115, 158sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℝ)
160159recnd 11162 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1 − 𝑇) ∈ ℂ)
1613relogcld 26548 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℝ)
162161recnd 11162 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘𝐵) ∈ ℂ)
163160, 162mulneg2d 11592 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · -(log‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
164156, 163eqtrd 2764 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = -((1 − 𝑇) · (log‘𝐵)))
165148, 164oveq12d 7371 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
166115, 145remulcld 11164 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℝ)
167166recnd 11162 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈ ℂ)
168159, 161remulcld 11164 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℝ)
169168recnd 11162 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1 − 𝑇) · (log‘𝐵)) ∈ ℂ)
170167, 169negdid 11506 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵))))
171165, 170eqtr4d 2767 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
172112, 133, 1713brtr3d 5126 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))
173166, 168readdcld 11163 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) ∈ ℝ)
17414, 127sseldd 3938 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℝ+)
175174relogcld 26548 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ∈ ℝ)
176173, 175ltnegd 11716 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ↔ -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))))
177172, 176mpbird 257 1 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  {cpr 4581   class class class wbr 5095  cmpt 5176   Po wpo 5529   Or wor 5530  ran crn 5624  cres 5625   Fn wfn 6481  wf 6482  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  +crp 12911  (,)cioo 13266  [,]cicc 13269  TopOpenctopn 17343  topGenctg 17359  fldccnfld 21279  intcnt 22920  cnccncf 24785   D cdv 25780  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481
This theorem is referenced by:  amgmlem  26916  amgmwlem  49775
  Copyright terms: Public domain W3C validator