MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimax2g Structured version   Visualization version   GIF version

Theorem fimax2g 9175
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimax2g ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimax2g
StepHypRef Expression
1 sopo 5546 . . . . 5 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 cnvpo 6235 . . . . 5 (𝑅 Po 𝐴𝑅 Po 𝐴)
31, 2sylib 218 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
4 frfi 9174 . . . 4 ((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
53, 4sylan 580 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
653adant3 1132 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Fr 𝐴)
7 ssid 3958 . . . . . . 7 𝐴𝐴
8 fri 5577 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
97, 8mpanr1 703 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
109an32s 652 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
11 vex 3440 . . . . . . . . 9 𝑦 ∈ V
12 vex 3440 . . . . . . . . 9 𝑥 ∈ V
1311, 12brcnv 5825 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413notbii 320 . . . . . . 7 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
1514ralbii 3075 . . . . . 6 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦)
1615rexbii 3076 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1710, 16sylib 218 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1817ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
19183adant1 1130 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
206, 19mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  c0 4284   class class class wbr 5092   Po wpo 5525   Or wor 5526   Fr wfr 5569  ccnv 5618  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-en 8873  df-fin 8876
This theorem is referenced by:  fimaxg  9176  ordunifi  9179  npomex  10890  n0sfincut  28251
  Copyright terms: Public domain W3C validator