MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimax2g Structured version   Visualization version   GIF version

Theorem fimax2g 9285
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimax2g ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimax2g
StepHypRef Expression
1 sopo 5606 . . . . 5 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 cnvpo 6283 . . . . 5 (𝑅 Po 𝐴𝑅 Po 𝐴)
31, 2sylib 217 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
4 frfi 9284 . . . 4 ((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
53, 4sylan 580 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
653adant3 1132 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Fr 𝐴)
7 ssid 4003 . . . . . . 7 𝐴𝐴
8 fri 5635 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
97, 8mpanr1 701 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
109an32s 650 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
11 vex 3478 . . . . . . . . 9 𝑦 ∈ V
12 vex 3478 . . . . . . . . 9 𝑥 ∈ V
1311, 12brcnv 5880 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413notbii 319 . . . . . . 7 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
1514ralbii 3093 . . . . . 6 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦)
1615rexbii 3094 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1710, 16sylib 217 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1817ex 413 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
19183adant1 1130 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
206, 19mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321   class class class wbr 5147   Po wpo 5585   Or wor 5586   Fr wfr 5627  ccnv 5674  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-en 8936  df-fin 8939
This theorem is referenced by:  fimaxg  9286  ordunifi  9289  npomex  10987
  Copyright terms: Public domain W3C validator