![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimax2g | Structured version Visualization version GIF version |
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
fimax2g | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5607 | . . . . 5 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | cnvpo 6286 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Po 𝐴) |
4 | frfi 9290 | . . . 4 ⊢ ((◡𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) | |
5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) |
6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ◡𝑅 Fr 𝐴) |
7 | ssid 4004 | . . . . . . 7 ⊢ 𝐴 ⊆ 𝐴 | |
8 | fri 5636 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) | |
9 | 7, 8 | mpanr1 701 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
10 | 9 | an32s 650 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
11 | vex 3478 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
12 | vex 3478 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
13 | 11, 12 | brcnv 5882 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
14 | 13 | notbii 319 | . . . . . . 7 ⊢ (¬ 𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦) |
15 | 14 | ralbii 3093 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
16 | 15 | rexbii 3094 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
17 | 10, 16 | sylib 217 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
18 | 17 | ex 413 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
19 | 18 | 3adant1 1130 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 Po wpo 5586 Or wor 5587 Fr wfr 5628 ◡ccnv 5675 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-en 8942 df-fin 8945 |
This theorem is referenced by: fimaxg 9292 ordunifi 9295 npomex 10993 |
Copyright terms: Public domain | W3C validator |