![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimax2g | Structured version Visualization version GIF version |
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
fimax2g | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5606 | . . . . 5 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | cnvpo 6285 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Po 𝐴) |
4 | frfi 9290 | . . . 4 ⊢ ((◡𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) | |
5 | 3, 4 | sylan 578 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) |
6 | 5 | 3adant3 1130 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ◡𝑅 Fr 𝐴) |
7 | ssid 4003 | . . . . . . 7 ⊢ 𝐴 ⊆ 𝐴 | |
8 | fri 5635 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) | |
9 | 7, 8 | mpanr1 699 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
10 | 9 | an32s 648 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
11 | vex 3476 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
12 | vex 3476 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
13 | 11, 12 | brcnv 5881 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
14 | 13 | notbii 319 | . . . . . . 7 ⊢ (¬ 𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦) |
15 | 14 | ralbii 3091 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
16 | 15 | rexbii 3092 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
17 | 10, 16 | sylib 217 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
18 | 17 | ex 411 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
19 | 18 | 3adant1 1128 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 Po wpo 5585 Or wor 5586 Fr wfr 5627 ◡ccnv 5674 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-en 8942 df-fin 8945 |
This theorem is referenced by: fimaxg 9292 ordunifi 9295 npomex 10993 |
Copyright terms: Public domain | W3C validator |