Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimax2g | Structured version Visualization version GIF version |
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
fimax2g | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5462 | . . . . 5 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | cnvpo 6117 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
3 | 1, 2 | sylib 221 | . . . 4 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Po 𝐴) |
4 | frfi 8797 | . . . 4 ⊢ ((◡𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) | |
5 | 3, 4 | sylan 584 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) |
6 | 5 | 3adant3 1130 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ◡𝑅 Fr 𝐴) |
7 | ssid 3915 | . . . . . . 7 ⊢ 𝐴 ⊆ 𝐴 | |
8 | fri 5487 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) | |
9 | 7, 8 | mpanr1 703 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
10 | 9 | an32s 652 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
11 | vex 3414 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
12 | vex 3414 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
13 | 11, 12 | brcnv 5723 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
14 | 13 | notbii 324 | . . . . . . 7 ⊢ (¬ 𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦) |
15 | 14 | ralbii 3098 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
16 | 15 | rexbii 3176 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
17 | 10, 16 | sylib 221 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
18 | 17 | ex 417 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
19 | 18 | 3adant1 1128 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∧ w3a 1085 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ∃wrex 3072 ⊆ wss 3859 ∅c0 4226 class class class wbr 5033 Po wpo 5442 Or wor 5443 Fr wfr 5481 ◡ccnv 5524 Fincfn 8528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-om 7581 df-en 8529 df-fin 8532 |
This theorem is referenced by: fimaxg 8799 ordunifi 8802 npomex 10457 |
Copyright terms: Public domain | W3C validator |