MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimax2g Structured version   Visualization version   GIF version

Theorem fimax2g 9350
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimax2g ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimax2g
StepHypRef Expression
1 sopo 5627 . . . . 5 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 cnvpo 6318 . . . . 5 (𝑅 Po 𝐴𝑅 Po 𝐴)
31, 2sylib 218 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
4 frfi 9349 . . . 4 ((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
53, 4sylan 579 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
653adant3 1132 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Fr 𝐴)
7 ssid 4031 . . . . . . 7 𝐴𝐴
8 fri 5657 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
97, 8mpanr1 702 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
109an32s 651 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
11 vex 3492 . . . . . . . . 9 𝑦 ∈ V
12 vex 3492 . . . . . . . . 9 𝑥 ∈ V
1311, 12brcnv 5907 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413notbii 320 . . . . . . 7 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
1514ralbii 3099 . . . . . 6 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦)
1615rexbii 3100 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1710, 16sylib 218 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1817ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
19183adant1 1130 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
206, 19mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166   Po wpo 5605   Or wor 5606   Fr wfr 5649  ccnv 5699  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-en 9004  df-fin 9007
This theorem is referenced by:  fimaxg  9351  ordunifi  9354  npomex  11065
  Copyright terms: Public domain W3C validator