| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimax2g | Structured version Visualization version GIF version | ||
| Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| fimax2g | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5585 | . . . . 5 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | cnvpo 6281 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Po 𝐴) |
| 4 | frfi 9298 | . . . 4 ⊢ ((◡𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) | |
| 5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ◡𝑅 Fr 𝐴) |
| 7 | ssid 3986 | . . . . . . 7 ⊢ 𝐴 ⊆ 𝐴 | |
| 8 | fri 5616 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) | |
| 9 | 7, 8 | mpanr1 703 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
| 10 | 9 | an32s 652 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
| 11 | vex 3468 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 12 | vex 3468 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 13 | 11, 12 | brcnv 5867 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 14 | 13 | notbii 320 | . . . . . . 7 ⊢ (¬ 𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦) |
| 15 | 14 | ralbii 3083 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| 16 | 15 | rexbii 3084 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| 17 | 10, 16 | sylib 218 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| 18 | 17 | ex 412 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
| 19 | 18 | 3adant1 1130 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
| 20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 Po wpo 5564 Or wor 5565 Fr wfr 5608 ◡ccnv 5658 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-en 8965 df-fin 8968 |
| This theorem is referenced by: fimaxg 9300 ordunifi 9303 npomex 11015 n0sfincut 28303 |
| Copyright terms: Public domain | W3C validator |