![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimax2g | Structured version Visualization version GIF version |
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
fimax2g | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5569 | . . . . 5 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | cnvpo 6244 | . . . . 5 ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝑅 Or 𝐴 → ◡𝑅 Po 𝐴) |
4 | frfi 9239 | . . . 4 ⊢ ((◡𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) | |
5 | 3, 4 | sylan 581 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝑅 Fr 𝐴) |
6 | 5 | 3adant3 1133 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ◡𝑅 Fr 𝐴) |
7 | ssid 3971 | . . . . . . 7 ⊢ 𝐴 ⊆ 𝐴 | |
8 | fri 5598 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) | |
9 | 7, 8 | mpanr1 702 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ ◡𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
10 | 9 | an32s 651 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
11 | vex 3452 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
12 | vex 3452 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
13 | 11, 12 | brcnv 5843 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
14 | 13 | notbii 320 | . . . . . . 7 ⊢ (¬ 𝑦◡𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦) |
15 | 14 | ralbii 3097 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
16 | 15 | rexbii 3098 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
17 | 10, 16 | sylib 217 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ ◡𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
18 | 17 | ex 414 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
19 | 18 | 3adant1 1131 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (◡𝑅 Fr 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
20 | 6, 19 | mpd 15 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 ∃wrex 3074 ⊆ wss 3915 ∅c0 4287 class class class wbr 5110 Po wpo 5548 Or wor 5549 Fr wfr 5590 ◡ccnv 5637 Fincfn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-om 7808 df-en 8891 df-fin 8894 |
This theorem is referenced by: fimaxg 9241 ordunifi 9244 npomex 10939 |
Copyright terms: Public domain | W3C validator |