| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on2ind | Structured version Visualization version GIF version | ||
| Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| on2ind.1 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) |
| on2ind.2 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) |
| on2ind.3 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) |
| on2ind.4 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) |
| on2ind.5 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) |
| on2ind.i | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) |
| Ref | Expression |
|---|---|
| on2ind | ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr 6350 | . 2 ⊢ E Fr On | |
| 2 | epweon 7714 | . . 3 ⊢ E We On | |
| 3 | weso 5610 | . . 3 ⊢ ( E We On → E Or On) | |
| 4 | sopo 5546 | . . 3 ⊢ ( E Or On → E Po On) | |
| 5 | 2, 3, 4 | mp2b 10 | . 2 ⊢ E Po On |
| 6 | epse 5601 | . 2 ⊢ E Se On | |
| 7 | on2ind.1 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
| 8 | on2ind.2 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
| 9 | on2ind.3 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
| 10 | on2ind.4 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
| 11 | on2ind.5 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
| 12 | predon 7725 | . . . . . 6 ⊢ (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑎) = 𝑎) |
| 14 | predon 7725 | . . . . . . 7 ⊢ (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏) | |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑏) = 𝑏) |
| 16 | 15 | raleqdv 3293 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑 ∈ 𝑏 𝜒)) |
| 17 | 13, 16 | raleqbidv 3313 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒)) |
| 18 | 13 | raleqdv 3293 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑐 ∈ 𝑎 𝜓)) |
| 19 | 15 | raleqdv 3293 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃 ↔ ∀𝑑 ∈ 𝑏 𝜃)) |
| 20 | 17, 18, 19 | 3anbi123d 1438 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) ↔ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃))) |
| 21 | on2ind.i | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) | |
| 22 | 20, 21 | sylbid 240 | . 2 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) → 𝜑)) |
| 23 | 1, 5, 6, 1, 5, 6, 7, 8, 9, 10, 11, 22 | xpord2ind 8084 | 1 ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 E cep 5518 Po wpo 5525 Or wor 5526 We wwe 5571 Predcpred 6252 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: naddcllem 8597 naddcom 8603 naddsuc2 8622 naddgeoa 43511 |
| Copyright terms: Public domain | W3C validator |