|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > on2ind | Structured version Visualization version GIF version | ||
| Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| on2ind.1 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | 
| on2ind.2 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | 
| on2ind.3 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | 
| on2ind.4 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | 
| on2ind.5 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | 
| on2ind.i | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) | 
| Ref | Expression | 
|---|---|
| on2ind | ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onfr 6423 | . 2 ⊢ E Fr On | |
| 2 | epweon 7795 | . . 3 ⊢ E We On | |
| 3 | weso 5676 | . . 3 ⊢ ( E We On → E Or On) | |
| 4 | sopo 5611 | . . 3 ⊢ ( E Or On → E Po On) | |
| 5 | 2, 3, 4 | mp2b 10 | . 2 ⊢ E Po On | 
| 6 | epse 5667 | . 2 ⊢ E Se On | |
| 7 | on2ind.1 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
| 8 | on2ind.2 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
| 9 | on2ind.3 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
| 10 | on2ind.4 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
| 11 | on2ind.5 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
| 12 | predon 7806 | . . . . . 6 ⊢ (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑎) = 𝑎) | 
| 14 | predon 7806 | . . . . . . 7 ⊢ (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏) | |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑏) = 𝑏) | 
| 16 | 15 | raleqdv 3326 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑 ∈ 𝑏 𝜒)) | 
| 17 | 13, 16 | raleqbidv 3346 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒)) | 
| 18 | 13 | raleqdv 3326 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑐 ∈ 𝑎 𝜓)) | 
| 19 | 15 | raleqdv 3326 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃 ↔ ∀𝑑 ∈ 𝑏 𝜃)) | 
| 20 | 17, 18, 19 | 3anbi123d 1438 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) ↔ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃))) | 
| 21 | on2ind.i | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) | |
| 22 | 20, 21 | sylbid 240 | . 2 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) → 𝜑)) | 
| 23 | 1, 5, 6, 1, 5, 6, 7, 8, 9, 10, 11, 22 | xpord2ind 8173 | 1 ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 E cep 5583 Po wpo 5590 Or wor 5591 We wwe 5636 Predcpred 6320 Oncon0 6384 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-iota 6514 df-fun 6563 df-fv 6569 df-1st 8014 df-2nd 8015 | 
| This theorem is referenced by: naddcllem 8714 naddcom 8720 naddsuc2 8739 naddgeoa 43407 | 
| Copyright terms: Public domain | W3C validator |