Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  on2ind Structured version   Visualization version   GIF version

Theorem on2ind 33755
Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.)
Hypotheses
Ref Expression
on2ind.1 (𝑎 = 𝑐 → (𝜑𝜓))
on2ind.2 (𝑏 = 𝑑 → (𝜓𝜒))
on2ind.3 (𝑎 = 𝑐 → (𝜃𝜒))
on2ind.4 (𝑎 = 𝑋 → (𝜑𝜏))
on2ind.5 (𝑏 = 𝑌 → (𝜏𝜂))
on2ind.i ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))
Assertion
Ref Expression
on2ind ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑   𝜓,𝑎   𝜏,𝑎   𝑏,𝑐   𝜒,𝑏   𝑏,𝑑   𝜂,𝑏   𝑐,𝑑   𝜑,𝑐   𝜃,𝑐   𝜓,𝑑   𝑋,𝑎,𝑏   𝑌,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝜓(𝑏,𝑐)   𝜒(𝑎,𝑐,𝑑)   𝜃(𝑎,𝑏,𝑑)   𝜏(𝑏,𝑐,𝑑)   𝜂(𝑎,𝑐,𝑑)   𝑋(𝑐,𝑑)   𝑌(𝑎,𝑐,𝑑)

Proof of Theorem on2ind
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
2 onfr 6290 . 2 E Fr On
3 epweon 7603 . . 3 E We On
4 weso 5571 . . 3 ( E We On → E Or On)
5 sopo 5513 . . 3 ( E Or On → E Po On)
63, 4, 5mp2b 10 . 2 E Po On
7 epse 5563 . 2 E Se On
8 on2ind.1 . 2 (𝑎 = 𝑐 → (𝜑𝜓))
9 on2ind.2 . 2 (𝑏 = 𝑑 → (𝜓𝜒))
10 on2ind.3 . 2 (𝑎 = 𝑐 → (𝜃𝜒))
11 on2ind.4 . 2 (𝑎 = 𝑋 → (𝜑𝜏))
12 on2ind.5 . 2 (𝑏 = 𝑌 → (𝜏𝜂))
13 predon 7612 . . . . . 6 (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎)
1413adantr 480 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑎) = 𝑎)
15 predon 7612 . . . . . . 7 (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏)
1615adantl 481 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑏) = 𝑏)
1716raleqdv 3339 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑𝑏 𝜒))
1814, 17raleqbidv 3327 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑐𝑎𝑑𝑏 𝜒))
1914raleqdv 3339 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑐𝑎 𝜓))
2016raleqdv 3339 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃 ↔ ∀𝑑𝑏 𝜃))
2118, 19, 203anbi123d 1434 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) ↔ (∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃)))
22 on2ind.i . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))
2321, 22sylbid 239 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) → 𝜑))
241, 2, 6, 7, 2, 6, 7, 8, 9, 10, 11, 12, 23xpord2ind 33721 1 ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  {copab 5132   E cep 5485   Po wpo 5492   Or wor 5493   We wwe 5534   × cxp 5578  Predcpred 6190  Oncon0 6251  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  naddcllem  33758  naddcom  33762
  Copyright terms: Public domain W3C validator