MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on2ind Structured version   Visualization version   GIF version

Theorem on2ind 8665
Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.)
Hypotheses
Ref Expression
on2ind.1 (𝑎 = 𝑐 → (𝜑𝜓))
on2ind.2 (𝑏 = 𝑑 → (𝜓𝜒))
on2ind.3 (𝑎 = 𝑐 → (𝜃𝜒))
on2ind.4 (𝑎 = 𝑋 → (𝜑𝜏))
on2ind.5 (𝑏 = 𝑌 → (𝜏𝜂))
on2ind.i ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))
Assertion
Ref Expression
on2ind ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑   𝜓,𝑎   𝜏,𝑎   𝑏,𝑐   𝜒,𝑏   𝑏,𝑑   𝜂,𝑏   𝑐,𝑑   𝜑,𝑐   𝜃,𝑐   𝜓,𝑑   𝑋,𝑎,𝑏   𝑌,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝜓(𝑏,𝑐)   𝜒(𝑎,𝑐,𝑑)   𝜃(𝑎,𝑏,𝑑)   𝜏(𝑏,𝑐,𝑑)   𝜂(𝑎,𝑐,𝑑)   𝑋(𝑐,𝑑)   𝑌(𝑎,𝑐,𝑑)

Proof of Theorem on2ind
StepHypRef Expression
1 onfr 6394 . 2 E Fr On
2 epweon 7756 . . 3 E We On
3 weso 5658 . . 3 ( E We On → E Or On)
4 sopo 5598 . . 3 ( E Or On → E Po On)
52, 3, 4mp2b 10 . 2 E Po On
6 epse 5650 . 2 E Se On
7 on2ind.1 . 2 (𝑎 = 𝑐 → (𝜑𝜓))
8 on2ind.2 . 2 (𝑏 = 𝑑 → (𝜓𝜒))
9 on2ind.3 . 2 (𝑎 = 𝑐 → (𝜃𝜒))
10 on2ind.4 . 2 (𝑎 = 𝑋 → (𝜑𝜏))
11 on2ind.5 . 2 (𝑏 = 𝑌 → (𝜏𝜂))
12 predon 7767 . . . . . 6 (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎)
1312adantr 480 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑎) = 𝑎)
14 predon 7767 . . . . . . 7 (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏)
1514adantl 481 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑏) = 𝑏)
1615raleqdv 3317 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑𝑏 𝜒))
1713, 16raleqbidv 3334 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑐𝑎𝑑𝑏 𝜒))
1813raleqdv 3317 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑐𝑎 𝜓))
1915raleqdv 3317 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃 ↔ ∀𝑑𝑏 𝜃))
2017, 18, 193anbi123d 1432 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) ↔ (∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃)))
21 on2ind.i . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))
2220, 21sylbid 239 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) → 𝜑))
231, 5, 6, 1, 5, 6, 7, 8, 9, 10, 11, 22xpord2ind 8129 1 ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053   E cep 5570   Po wpo 5577   Or wor 5578   We wwe 5621  Predcpred 6290  Oncon0 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-iota 6486  df-fun 6536  df-fv 6542  df-1st 7969  df-2nd 7970
This theorem is referenced by:  naddcllem  8672  naddcom  8678  naddsuc2  42693  naddgeoa  42695
  Copyright terms: Public domain W3C validator