Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  on2ind Structured version   Visualization version   GIF version

Theorem on2ind 33426
Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.)
Hypotheses
Ref Expression
on2ind.1 (𝑎 = 𝑐 → (𝜑𝜓))
on2ind.2 (𝑏 = 𝑑 → (𝜓𝜒))
on2ind.3 (𝑎 = 𝑐 → (𝜃𝜒))
on2ind.4 (𝑎 = 𝑋 → (𝜑𝜏))
on2ind.5 (𝑏 = 𝑌 → (𝜏𝜂))
on2ind.i ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))
Assertion
Ref Expression
on2ind ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑   𝜓,𝑎   𝜏,𝑎   𝑏,𝑐   𝜒,𝑏   𝑏,𝑑   𝜂,𝑏   𝑐,𝑑   𝜑,𝑐   𝜃,𝑐   𝜓,𝑑   𝑋,𝑎,𝑏   𝑌,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝜓(𝑏,𝑐)   𝜒(𝑎,𝑐,𝑑)   𝜃(𝑎,𝑏,𝑑)   𝜏(𝑏,𝑐,𝑑)   𝜂(𝑎,𝑐,𝑑)   𝑋(𝑐,𝑑)   𝑌(𝑎,𝑐,𝑑)

Proof of Theorem on2ind
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
2 onfr 6213 . 2 E Fr On
3 epweon 7502 . . 3 E We On
4 weso 5519 . . 3 ( E We On → E Or On)
5 sopo 5465 . . 3 ( E Or On → E Po On)
63, 4, 5mp2b 10 . 2 E Po On
7 epse 5511 . 2 E Se On
8 on2ind.1 . 2 (𝑎 = 𝑐 → (𝜑𝜓))
9 on2ind.2 . 2 (𝑏 = 𝑑 → (𝜓𝜒))
10 on2ind.3 . 2 (𝑎 = 𝑐 → (𝜃𝜒))
11 on2ind.4 . 2 (𝑎 = 𝑋 → (𝜑𝜏))
12 on2ind.5 . 2 (𝑏 = 𝑌 → (𝜏𝜂))
13 predon 7511 . . . . . 6 (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎)
1413adantr 484 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑎) = 𝑎)
15 predon 7511 . . . . . . 7 (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏)
1615adantl 485 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑏) = 𝑏)
1716raleqdv 3329 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑𝑏 𝜒))
1814, 17raleqbidv 3319 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑐𝑎𝑑𝑏 𝜒))
1914raleqdv 3329 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑐𝑎 𝜓))
2016raleqdv 3329 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃 ↔ ∀𝑑𝑏 𝜃))
2118, 19, 203anbi123d 1433 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) ↔ (∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃)))
22 on2ind.i . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 𝜒 ∧ ∀𝑐𝑎 𝜓 ∧ ∀𝑑𝑏 𝜃) → 𝜑))
2321, 22sylbid 243 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) → 𝜑))
241, 2, 6, 7, 2, 6, 7, 8, 9, 10, 11, 12, 23xpord2ind 33362 1 ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070   class class class wbr 5036  {copab 5098   E cep 5438   Po wpo 5445   Or wor 5446   We wwe 5486   × cxp 5526  Predcpred 6130  Oncon0 6174  cfv 6340  1st c1st 7697  2nd c2nd 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-iota 6299  df-fun 6342  df-fv 6348  df-1st 7699  df-2nd 7700
This theorem is referenced by:  naddcllem  33429  naddcom  33433
  Copyright terms: Public domain W3C validator