![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on2ind | Structured version Visualization version GIF version |
Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.) |
Ref | Expression |
---|---|
on2ind.1 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) |
on2ind.2 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) |
on2ind.3 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) |
on2ind.4 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) |
on2ind.5 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) |
on2ind.i | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) |
Ref | Expression |
---|---|
on2ind | ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onfr 6357 | . 2 ⊢ E Fr On | |
2 | epweon 7710 | . . 3 ⊢ E We On | |
3 | weso 5625 | . . 3 ⊢ ( E We On → E Or On) | |
4 | sopo 5565 | . . 3 ⊢ ( E Or On → E Po On) | |
5 | 2, 3, 4 | mp2b 10 | . 2 ⊢ E Po On |
6 | epse 5617 | . 2 ⊢ E Se On | |
7 | on2ind.1 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
8 | on2ind.2 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
9 | on2ind.3 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
10 | on2ind.4 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
11 | on2ind.5 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
12 | predon 7721 | . . . . . 6 ⊢ (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎) | |
13 | 12 | adantr 482 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑎) = 𝑎) |
14 | predon 7721 | . . . . . . 7 ⊢ (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏) | |
15 | 14 | adantl 483 | . . . . . 6 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → Pred( E , On, 𝑏) = 𝑏) |
16 | 15 | raleqdv 3314 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑 ∈ 𝑏 𝜒)) |
17 | 13, 16 | raleqbidv 3320 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒)) |
18 | 13 | raleqdv 3314 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑐 ∈ 𝑎 𝜓)) |
19 | 15 | raleqdv 3314 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃 ↔ ∀𝑑 ∈ 𝑏 𝜃)) |
20 | 17, 18, 19 | 3anbi123d 1437 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) ↔ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃))) |
21 | on2ind.i | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) | |
22 | 20, 21 | sylbid 239 | . 2 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ Pred ( E , On, 𝑎)∀𝑑 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑏)𝜃) → 𝜑)) |
23 | 1, 5, 6, 1, 5, 6, 7, 8, 9, 10, 11, 22 | xpord2ind 8081 | 1 ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3065 E cep 5537 Po wpo 5544 Or wor 5545 We wwe 5588 Predcpred 6253 Oncon0 6318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-iota 6449 df-fun 6499 df-fv 6505 df-1st 7922 df-2nd 7923 |
This theorem is referenced by: naddcllem 8623 naddcom 8629 |
Copyright terms: Public domain | W3C validator |