MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on2recsov Structured version   Visualization version   GIF version

Theorem on2recsov 8683
Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.)
Hypothesis
Ref Expression
on2recs.1 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
Assertion
Ref Expression
on2recsov ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem on2recsov
StepHypRef Expression
1 df-ov 7418 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 5709 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On))
3 eqid 2728 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
4 onfr 6403 . . . . . . . . 9 E Fr On
54a1i 11 . . . . . . . 8 (⊤ → E Fr On)
63, 5, 5frxp2 8144 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On))
76mptru 1541 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On)
8 epweon 7772 . . . . . . . . . 10 E We On
9 weso 5664 . . . . . . . . . 10 ( E We On → E Or On)
10 sopo 5604 . . . . . . . . . 10 ( E Or On → E Po On)
118, 9, 10mp2b 10 . . . . . . . . 9 E Po On
1211a1i 11 . . . . . . . 8 (⊤ → E Po On)
133, 12, 12poxp2 8143 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On))
1413mptru 1541 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On)
15 epse 5656 . . . . . . . . 9 E Se On
1615a1i 11 . . . . . . . 8 (⊤ → E Se On)
173, 16, 16sexp2 8146 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
1817mptru 1541 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)
197, 14, 183pm3.2i 1337 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
20 on2recs.1 . . . . . 6 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
2120fpr2 8304 . . . . 5 ((({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)) ∧ ⟨𝐴, 𝐵⟩ ∈ (On × On)) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
2219, 21mpan 689 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
232, 22sylbir 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
241, 23eqtrid 2780 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
253xpord2pred 8145 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
26 predon 7783 . . . . . . . . . 10 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
2726adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
2827uneq1d 4159 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = (𝐴 ∪ {𝐴}))
29 df-suc 6370 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
3028, 29eqtr4di 2786 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = suc 𝐴)
31 predon 7783 . . . . . . . . . 10 (𝐵 ∈ On → Pred( E , On, 𝐵) = 𝐵)
3231adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐵) = 𝐵)
3332uneq1d 4159 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = (𝐵 ∪ {𝐵}))
34 df-suc 6370 . . . . . . . 8 suc 𝐵 = (𝐵 ∪ {𝐵})
3533, 34eqtr4di 2786 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = suc 𝐵)
3630, 35xpeq12d 5704 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) = (suc 𝐴 × suc 𝐵))
3736difeq1d 4118 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3825, 37eqtrd 2768 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3938reseq2d 5980 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩)) = (𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩})))
4039oveq2d 7431 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
4124, 40eqtrd 2768 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1085   = wceq 1534  wtru 1535  wcel 2099  wne 2936  cdif 3942  cun 3943  {csn 4625  cop 4631   class class class wbr 5143  {copab 5205   E cep 5576   Po wpo 5583   Or wor 5584   Fr wfr 5625   Se wse 5626   We wwe 5627   × cxp 5671  cres 5675  Predcpred 6299  Oncon0 6364  suc csuc 6366  cfv 6543  (class class class)co 7415  1st c1st 7986  2nd c2nd 7987  frecscfrecs 8280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-1st 7988  df-2nd 7989  df-frecs 8281
This theorem is referenced by:  naddcllem  8691
  Copyright terms: Public domain W3C validator