MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on2recsov Structured version   Visualization version   GIF version

Theorem on2recsov 8724
Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.)
Hypothesis
Ref Expression
on2recs.1 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
Assertion
Ref Expression
on2recsov ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem on2recsov
StepHypRef Expression
1 df-ov 7451 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 5736 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On))
3 eqid 2740 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
4 onfr 6434 . . . . . . . . 9 E Fr On
54a1i 11 . . . . . . . 8 (⊤ → E Fr On)
63, 5, 5frxp2 8185 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On))
76mptru 1544 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On)
8 epweon 7810 . . . . . . . . . 10 E We On
9 weso 5691 . . . . . . . . . 10 ( E We On → E Or On)
10 sopo 5627 . . . . . . . . . 10 ( E Or On → E Po On)
118, 9, 10mp2b 10 . . . . . . . . 9 E Po On
1211a1i 11 . . . . . . . 8 (⊤ → E Po On)
133, 12, 12poxp2 8184 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On))
1413mptru 1544 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On)
15 epse 5682 . . . . . . . . 9 E Se On
1615a1i 11 . . . . . . . 8 (⊤ → E Se On)
173, 16, 16sexp2 8187 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
1817mptru 1544 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)
197, 14, 183pm3.2i 1339 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
20 on2recs.1 . . . . . 6 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
2120fpr2 8345 . . . . 5 ((({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)) ∧ ⟨𝐴, 𝐵⟩ ∈ (On × On)) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
2219, 21mpan 689 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
232, 22sylbir 235 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
241, 23eqtrid 2792 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
253xpord2pred 8186 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
26 predon 7821 . . . . . . . . . 10 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
2726adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
2827uneq1d 4190 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = (𝐴 ∪ {𝐴}))
29 df-suc 6401 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
3028, 29eqtr4di 2798 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = suc 𝐴)
31 predon 7821 . . . . . . . . . 10 (𝐵 ∈ On → Pred( E , On, 𝐵) = 𝐵)
3231adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐵) = 𝐵)
3332uneq1d 4190 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = (𝐵 ∪ {𝐵}))
34 df-suc 6401 . . . . . . . 8 suc 𝐵 = (𝐵 ∪ {𝐵})
3533, 34eqtr4di 2798 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = suc 𝐵)
3630, 35xpeq12d 5731 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) = (suc 𝐴 × suc 𝐵))
3736difeq1d 4148 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3825, 37eqtrd 2780 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3938reseq2d 6009 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩)) = (𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩})))
4039oveq2d 7464 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
4124, 40eqtrd 2780 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  cdif 3973  cun 3974  {csn 4648  cop 4654   class class class wbr 5166  {copab 5228   E cep 5598   Po wpo 5605   Or wor 5606   Fr wfr 5649   Se wse 5650   We wwe 5651   × cxp 5698  cres 5702  Predcpred 6331  Oncon0 6395  suc csuc 6397  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  frecscfrecs 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031  df-frecs 8322
This theorem is referenced by:  naddcllem  8732
  Copyright terms: Public domain W3C validator