Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  on2recsov Structured version   Visualization version   GIF version

Theorem on2recsov 33424
Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.)
Hypothesis
Ref Expression
on2recs.1 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
Assertion
Ref Expression
on2recsov ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem on2recsov
StepHypRef Expression
1 df-ov 7159 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 5564 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On))
3 eqid 2758 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
4 onfr 6213 . . . . . . . . 9 E Fr On
54a1i 11 . . . . . . . 8 (⊤ → E Fr On)
63, 5, 5frxp2 33358 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On))
76mptru 1545 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On)
8 epweon 7502 . . . . . . . . . 10 E We On
9 weso 5519 . . . . . . . . . 10 ( E We On → E Or On)
10 sopo 5465 . . . . . . . . . 10 ( E Or On → E Po On)
118, 9, 10mp2b 10 . . . . . . . . 9 E Po On
1211a1i 11 . . . . . . . 8 (⊤ → E Po On)
133, 12, 12poxp2 33357 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On))
1413mptru 1545 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On)
15 epse 5511 . . . . . . . . 9 E Se On
1615a1i 11 . . . . . . . 8 (⊤ → E Se On)
173, 16, 16sexp2 33360 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
1817mptru 1545 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)
197, 14, 183pm3.2i 1336 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
20 on2recs.1 . . . . . 6 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
2120fpr2 33414 . . . . 5 ((({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)) ∧ ⟨𝐴, 𝐵⟩ ∈ (On × On)) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
2219, 21mpan 689 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
232, 22sylbir 238 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
241, 23syl5eq 2805 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
253xpord2pred 33359 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
26 predon 7511 . . . . . . . . . 10 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
2726adantr 484 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
2827uneq1d 4069 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = (𝐴 ∪ {𝐴}))
29 df-suc 6180 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
3028, 29eqtr4di 2811 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = suc 𝐴)
31 predon 7511 . . . . . . . . . 10 (𝐵 ∈ On → Pred( E , On, 𝐵) = 𝐵)
3231adantl 485 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐵) = 𝐵)
3332uneq1d 4069 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = (𝐵 ∪ {𝐵}))
34 df-suc 6180 . . . . . . . 8 suc 𝐵 = (𝐵 ∪ {𝐵})
3533, 34eqtr4di 2811 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = suc 𝐵)
3630, 35xpeq12d 5559 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) = (suc 𝐴 × suc 𝐵))
3736difeq1d 4029 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3825, 37eqtrd 2793 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3938reseq2d 5828 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩)) = (𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩})))
4039oveq2d 7172 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
4124, 40eqtrd 2793 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  wne 2951  cdif 3857  cun 3858  {csn 4525  cop 4531   class class class wbr 5036  {copab 5098   E cep 5438   Po wpo 5445   Or wor 5446   Fr wfr 5484   Se wse 5485   We wwe 5486   × cxp 5526  cres 5530  Predcpred 6130  Oncon0 6174  suc csuc 6176  cfv 6340  (class class class)co 7156  1st c1st 7697  2nd c2nd 7698  frecscfrecs 33391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-1st 7699  df-2nd 7700  df-frecs 33392
This theorem is referenced by:  naddcllem  33428
  Copyright terms: Public domain W3C validator