Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  on2recsov Structured version   Visualization version   GIF version

Theorem on2recsov 33827
Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.)
Hypothesis
Ref Expression
on2recs.1 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
Assertion
Ref Expression
on2recsov ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem on2recsov
StepHypRef Expression
1 df-ov 7278 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 5625 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On))
3 eqid 2738 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
4 onfr 6305 . . . . . . . . 9 E Fr On
54a1i 11 . . . . . . . 8 (⊤ → E Fr On)
63, 5, 5frxp2 33791 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On))
76mptru 1546 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On)
8 epweon 7625 . . . . . . . . . 10 E We On
9 weso 5580 . . . . . . . . . 10 ( E We On → E Or On)
10 sopo 5522 . . . . . . . . . 10 ( E Or On → E Po On)
118, 9, 10mp2b 10 . . . . . . . . 9 E Po On
1211a1i 11 . . . . . . . 8 (⊤ → E Po On)
133, 12, 12poxp2 33790 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On))
1413mptru 1546 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On)
15 epse 5572 . . . . . . . . 9 E Se On
1615a1i 11 . . . . . . . 8 (⊤ → E Se On)
173, 16, 16sexp2 33793 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
1817mptru 1546 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)
197, 14, 183pm3.2i 1338 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
20 on2recs.1 . . . . . 6 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
2120fpr2 8120 . . . . 5 ((({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)) ∧ ⟨𝐴, 𝐵⟩ ∈ (On × On)) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
2219, 21mpan 687 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
232, 22sylbir 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
241, 23eqtrid 2790 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
253xpord2pred 33792 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
26 predon 7635 . . . . . . . . . 10 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
2726adantr 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
2827uneq1d 4096 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = (𝐴 ∪ {𝐴}))
29 df-suc 6272 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
3028, 29eqtr4di 2796 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = suc 𝐴)
31 predon 7635 . . . . . . . . . 10 (𝐵 ∈ On → Pred( E , On, 𝐵) = 𝐵)
3231adantl 482 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐵) = 𝐵)
3332uneq1d 4096 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = (𝐵 ∪ {𝐵}))
34 df-suc 6272 . . . . . . . 8 suc 𝐵 = (𝐵 ∪ {𝐵})
3533, 34eqtr4di 2796 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = suc 𝐵)
3630, 35xpeq12d 5620 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) = (suc 𝐴 × suc 𝐵))
3736difeq1d 4056 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3825, 37eqtrd 2778 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3938reseq2d 5891 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩)) = (𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩})))
4039oveq2d 7291 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
4124, 40eqtrd 2778 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  wne 2943  cdif 3884  cun 3885  {csn 4561  cop 4567   class class class wbr 5074  {copab 5136   E cep 5494   Po wpo 5501   Or wor 5502   Fr wfr 5541   Se wse 5542   We wwe 5543   × cxp 5587  cres 5591  Predcpred 6201  Oncon0 6266  suc csuc 6268  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  frecscfrecs 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-frecs 8097
This theorem is referenced by:  naddcllem  33831
  Copyright terms: Public domain W3C validator