MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on2recsov Structured version   Visualization version   GIF version

Theorem on2recsov 8705
Description: Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.)
Hypothesis
Ref Expression
on2recs.1 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
Assertion
Ref Expression
on2recsov ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem on2recsov
StepHypRef Expression
1 df-ov 7434 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 5725 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On))
3 eqid 2735 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
4 onfr 6425 . . . . . . . . 9 E Fr On
54a1i 11 . . . . . . . 8 (⊤ → E Fr On)
63, 5, 5frxp2 8168 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On))
76mptru 1544 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On)
8 epweon 7794 . . . . . . . . . 10 E We On
9 weso 5680 . . . . . . . . . 10 ( E We On → E Or On)
10 sopo 5616 . . . . . . . . . 10 ( E Or On → E Po On)
118, 9, 10mp2b 10 . . . . . . . . 9 E Po On
1211a1i 11 . . . . . . . 8 (⊤ → E Po On)
133, 12, 12poxp2 8167 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On))
1413mptru 1544 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On)
15 epse 5671 . . . . . . . . 9 E Se On
1615a1i 11 . . . . . . . 8 (⊤ → E Se On)
173, 16, 16sexp2 8170 . . . . . . 7 (⊤ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
1817mptru 1544 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)
197, 14, 183pm3.2i 1338 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On))
20 on2recs.1 . . . . . 6 𝐹 = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), 𝐺)
2120fpr2 8328 . . . . 5 ((({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Fr (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Po (On × On) ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} Se (On × On)) ∧ ⟨𝐴, 𝐵⟩ ∈ (On × On)) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
2219, 21mpan 690 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (On × On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
232, 22sylbir 235 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹‘⟨𝐴, 𝐵⟩) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
241, 23eqtrid 2787 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))))
253xpord2pred 8169 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
26 predon 7805 . . . . . . . . . 10 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
2726adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
2827uneq1d 4177 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = (𝐴 ∪ {𝐴}))
29 df-suc 6392 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
3028, 29eqtr4di 2793 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐴) ∪ {𝐴}) = suc 𝐴)
31 predon 7805 . . . . . . . . . 10 (𝐵 ∈ On → Pred( E , On, 𝐵) = 𝐵)
3231adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred( E , On, 𝐵) = 𝐵)
3332uneq1d 4177 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = (𝐵 ∪ {𝐵}))
34 df-suc 6392 . . . . . . . 8 suc 𝐵 = (𝐵 ∪ {𝐵})
3533, 34eqtr4di 2793 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Pred( E , On, 𝐵) ∪ {𝐵}) = suc 𝐵)
3630, 35xpeq12d 5720 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) = (suc 𝐴 × suc 𝐵))
3736difeq1d 4135 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((Pred( E , On, 𝐴) ∪ {𝐴}) × (Pred( E , On, 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3825, 37eqtrd 2775 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩) = ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))
3938reseq2d 6000 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩)) = (𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩})))
4039oveq2d 7447 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (⟨𝐴, 𝐵𝐺(𝐹 ↾ Pred({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), ⟨𝐴, 𝐵⟩))) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
4124, 40eqtrd 2775 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (⟨𝐴, 𝐵𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {⟨𝐴, 𝐵⟩}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wtru 1538  wcel 2106  wne 2938  cdif 3960  cun 3961  {csn 4631  cop 4637   class class class wbr 5148  {copab 5210   E cep 5588   Po wpo 5595   Or wor 5596   Fr wfr 5638   Se wse 5639   We wwe 5640   × cxp 5687  cres 5691  Predcpred 6322  Oncon0 6386  suc csuc 6388  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  frecscfrecs 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-frecs 8305
This theorem is referenced by:  naddcllem  8713
  Copyright terms: Public domain W3C validator