| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssonunii | Structured version Visualization version GIF version | ||
| Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| ssonuni.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ssonunii | ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssonuni.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ssonuni 7768 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3457 ⊆ wss 3924 ∪ cuni 4880 Oncon0 6349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-tr 5227 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-ord 6352 df-on 6353 |
| This theorem is referenced by: uniordint 7789 tz9.12lem2 9794 ttukeylem6 10520 onsetreclem2 49290 |
| Copyright terms: Public domain | W3C validator |