MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem2 Structured version   Visualization version   GIF version

Theorem tz9.12lem2 9782
Description: Lemma for tz9.12 9784. (Contributed by NM, 22-Sep-2003.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem2 suc (𝐹𝐴) ∈ On
Distinct variable group:   𝑧,𝑣,𝐴
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem2
StepHypRef Expression
1 tz9.12lem.1 . . . 4 𝐴 ∈ V
2 tz9.12lem.2 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
31, 2tz9.12lem1 9781 . . 3 (𝐹𝐴) ⊆ On
42funmpt2 6587 . . . . 5 Fun 𝐹
51funimaex 6636 . . . . 5 (Fun 𝐹 → (𝐹𝐴) ∈ V)
64, 5ax-mp 5 . . . 4 (𝐹𝐴) ∈ V
76ssonunii 7767 . . 3 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ∈ On)
83, 7ax-mp 5 . 2 (𝐹𝐴) ∈ On
98onsuci 7826 1 suc (𝐹𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  wss 3948   cuni 4908   cint 4950  cmpt 5231  cima 5679  Oncon0 6364  suc csuc 6366  Fun wfun 6537  cfv 6543  𝑅1cr1 9756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-fun 6545
This theorem is referenced by:  tz9.12lem3  9783  tz9.12  9784
  Copyright terms: Public domain W3C validator