Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz9.12lem2 | Structured version Visualization version GIF version |
Description: Lemma for tz9.12 9479. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
tz9.12lem.1 | ⊢ 𝐴 ∈ V |
tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
Ref | Expression |
---|---|
tz9.12lem2 | ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.12lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
3 | 1, 2 | tz9.12lem1 9476 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ On |
4 | 2 | funmpt2 6457 | . . . . 5 ⊢ Fun 𝐹 |
5 | 1 | funimaex 6505 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐹 “ 𝐴) ∈ V |
7 | 6 | ssonunii 7608 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ On → ∪ (𝐹 “ 𝐴) ∈ On) |
8 | 3, 7 | ax-mp 5 | . 2 ⊢ ∪ (𝐹 “ 𝐴) ∈ On |
9 | 8 | onsuci 7660 | 1 ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 ∩ cint 4876 ↦ cmpt 5153 “ cima 5583 Oncon0 6251 suc csuc 6253 Fun wfun 6412 ‘cfv 6418 𝑅1cr1 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-fun 6420 |
This theorem is referenced by: tz9.12lem3 9478 tz9.12 9479 |
Copyright terms: Public domain | W3C validator |