Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz9.12lem2 | Structured version Visualization version GIF version |
Description: Lemma for tz9.12 9548. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
tz9.12lem.1 | ⊢ 𝐴 ∈ V |
tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
Ref | Expression |
---|---|
tz9.12lem2 | ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.12lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
3 | 1, 2 | tz9.12lem1 9545 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ On |
4 | 2 | funmpt2 6473 | . . . . 5 ⊢ Fun 𝐹 |
5 | 1 | funimaex 6521 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐹 “ 𝐴) ∈ V |
7 | 6 | ssonunii 7631 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ On → ∪ (𝐹 “ 𝐴) ∈ On) |
8 | 3, 7 | ax-mp 5 | . 2 ⊢ ∪ (𝐹 “ 𝐴) ∈ On |
9 | 8 | onsuci 7685 | 1 ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∪ cuni 4839 ∩ cint 4879 ↦ cmpt 5157 “ cima 5592 Oncon0 6266 suc csuc 6268 Fun wfun 6427 ‘cfv 6433 𝑅1cr1 9520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-fun 6435 |
This theorem is referenced by: tz9.12lem3 9547 tz9.12 9548 |
Copyright terms: Public domain | W3C validator |