MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem2 Structured version   Visualization version   GIF version

Theorem tz9.12lem2 9741
Description: Lemma for tz9.12 9743. (Contributed by NM, 22-Sep-2003.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem2 suc (𝐹𝐴) ∈ On
Distinct variable group:   𝑧,𝑣,𝐴
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem2
StepHypRef Expression
1 tz9.12lem.1 . . . 4 𝐴 ∈ V
2 tz9.12lem.2 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
31, 2tz9.12lem1 9740 . . 3 (𝐹𝐴) ⊆ On
42funmpt2 6555 . . . . 5 Fun 𝐹
51funimaex 6605 . . . . 5 (Fun 𝐹 → (𝐹𝐴) ∈ V)
64, 5ax-mp 5 . . . 4 (𝐹𝐴) ∈ V
76ssonunii 7757 . . 3 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ∈ On)
83, 7ax-mp 5 . 2 (𝐹𝐴) ∈ On
98onsuci 7814 1 suc (𝐹𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914   cuni 4871   cint 4910  cmpt 5188  cima 5641  Oncon0 6332  suc csuc 6334  Fun wfun 6505  cfv 6511  𝑅1cr1 9715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-fun 6513
This theorem is referenced by:  tz9.12lem3  9742  tz9.12  9743
  Copyright terms: Public domain W3C validator