| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.12lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for tz9.12 9743. (Contributed by NM, 22-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.12lem.1 | ⊢ 𝐴 ∈ V |
| tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
| Ref | Expression |
|---|---|
| tz9.12lem2 | ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 3 | 1, 2 | tz9.12lem1 9740 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ On |
| 4 | 2 | funmpt2 6555 | . . . . 5 ⊢ Fun 𝐹 |
| 5 | 1 | funimaex 6605 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐹 “ 𝐴) ∈ V |
| 7 | 6 | ssonunii 7757 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ On → ∪ (𝐹 “ 𝐴) ∈ On) |
| 8 | 3, 7 | ax-mp 5 | . 2 ⊢ ∪ (𝐹 “ 𝐴) ∈ On |
| 9 | 8 | onsuci 7814 | 1 ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 ∩ cint 4910 ↦ cmpt 5188 “ cima 5641 Oncon0 6332 suc csuc 6334 Fun wfun 6505 ‘cfv 6511 𝑅1cr1 9715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-fun 6513 |
| This theorem is referenced by: tz9.12lem3 9742 tz9.12 9743 |
| Copyright terms: Public domain | W3C validator |