MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem2 Structured version   Visualization version   GIF version

Theorem tz9.12lem2 9785
Description: Lemma for tz9.12 9787. (Contributed by NM, 22-Sep-2003.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem2 suc (𝐹𝐴) ∈ On
Distinct variable group:   𝑧,𝑣,𝐴
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem2
StepHypRef Expression
1 tz9.12lem.1 . . . 4 𝐴 ∈ V
2 tz9.12lem.2 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
31, 2tz9.12lem1 9784 . . 3 (𝐹𝐴) ⊆ On
42funmpt2 6581 . . . . 5 Fun 𝐹
51funimaex 6630 . . . . 5 (Fun 𝐹 → (𝐹𝐴) ∈ V)
64, 5ax-mp 5 . . . 4 (𝐹𝐴) ∈ V
76ssonunii 7765 . . 3 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ∈ On)
83, 7ax-mp 5 . 2 (𝐹𝐴) ∈ On
98onsuci 7824 1 suc (𝐹𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  wss 3943   cuni 4902   cint 4943  cmpt 5224  cima 5672  Oncon0 6358  suc csuc 6360  Fun wfun 6531  cfv 6537  𝑅1cr1 9759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-suc 6364  df-fun 6539
This theorem is referenced by:  tz9.12lem3  9786  tz9.12  9787
  Copyright terms: Public domain W3C validator