| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.12lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for tz9.12 9689. (Contributed by NM, 22-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.12lem.1 | ⊢ 𝐴 ∈ V |
| tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
| Ref | Expression |
|---|---|
| tz9.12lem2 | ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 3 | 1, 2 | tz9.12lem1 9686 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ On |
| 4 | 2 | funmpt2 6526 | . . . . 5 ⊢ Fun 𝐹 |
| 5 | 1 | funimaex 6575 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐹 “ 𝐴) ∈ V |
| 7 | 6 | ssonunii 7720 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ On → ∪ (𝐹 “ 𝐴) ∈ On) |
| 8 | 3, 7 | ax-mp 5 | . 2 ⊢ ∪ (𝐹 “ 𝐴) ∈ On |
| 9 | 8 | onsuci 7775 | 1 ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4858 ∩ cint 4897 ↦ cmpt 5174 “ cima 5622 Oncon0 6312 suc csuc 6314 Fun wfun 6481 ‘cfv 6487 𝑅1cr1 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 df-suc 6318 df-fun 6489 |
| This theorem is referenced by: tz9.12lem3 9688 tz9.12 9689 |
| Copyright terms: Public domain | W3C validator |