MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem2 Structured version   Visualization version   GIF version

Theorem tz9.12lem2 9826
Description: Lemma for tz9.12 9828. (Contributed by NM, 22-Sep-2003.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem2 suc (𝐹𝐴) ∈ On
Distinct variable group:   𝑧,𝑣,𝐴
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem2
StepHypRef Expression
1 tz9.12lem.1 . . . 4 𝐴 ∈ V
2 tz9.12lem.2 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
31, 2tz9.12lem1 9825 . . 3 (𝐹𝐴) ⊆ On
42funmpt2 6607 . . . . 5 Fun 𝐹
51funimaex 6656 . . . . 5 (Fun 𝐹 → (𝐹𝐴) ∈ V)
64, 5ax-mp 5 . . . 4 (𝐹𝐴) ∈ V
76ssonunii 7800 . . 3 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ∈ On)
83, 7ax-mp 5 . 2 (𝐹𝐴) ∈ On
98onsuci 7859 1 suc (𝐹𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  wss 3963   cuni 4912   cint 4951  cmpt 5231  cima 5692  Oncon0 6386  suc csuc 6388  Fun wfun 6557  cfv 6563  𝑅1cr1 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-fun 6565
This theorem is referenced by:  tz9.12lem3  9827  tz9.12  9828
  Copyright terms: Public domain W3C validator