Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem2 Structured version   Visualization version   GIF version

Theorem onsetreclem2 45699
Description: Lemma for onsetrec 45701. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem2.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem2 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem2
StepHypRef Expression
1 onsetreclem2.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
21onsetreclem1 45698 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
3 vex 3413 . . . 4 𝑎 ∈ V
43ssonunii 7506 . . 3 (𝑎 ⊆ On → 𝑎 ∈ On)
5 suceloni 7532 . . 3 ( 𝑎 ∈ On → suc 𝑎 ∈ On)
6 prssi 4714 . . 3 (( 𝑎 ∈ On ∧ suc 𝑎 ∈ On) → { 𝑎, suc 𝑎} ⊆ On)
74, 5, 6syl2anc2 588 . 2 (𝑎 ⊆ On → { 𝑎, suc 𝑎} ⊆ On)
82, 7eqsstrid 3942 1 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3409  wss 3860  {cpr 4527   cuni 4801  cmpt 5115  Oncon0 6173  suc csuc 6175  cfv 6339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fv 6347
This theorem is referenced by:  onsetrec  45701
  Copyright terms: Public domain W3C validator