Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem2 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 45701. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem2.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem2 | ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
2 | 1 | onsetreclem1 45698 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
3 | vex 3413 | . . . 4 ⊢ 𝑎 ∈ V | |
4 | 3 | ssonunii 7506 | . . 3 ⊢ (𝑎 ⊆ On → ∪ 𝑎 ∈ On) |
5 | suceloni 7532 | . . 3 ⊢ (∪ 𝑎 ∈ On → suc ∪ 𝑎 ∈ On) | |
6 | prssi 4714 | . . 3 ⊢ ((∪ 𝑎 ∈ On ∧ suc ∪ 𝑎 ∈ On) → {∪ 𝑎, suc ∪ 𝑎} ⊆ On) | |
7 | 4, 5, 6 | syl2anc2 588 | . 2 ⊢ (𝑎 ⊆ On → {∪ 𝑎, suc ∪ 𝑎} ⊆ On) |
8 | 2, 7 | eqsstrid 3942 | 1 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 {cpr 4527 ∪ cuni 4801 ↦ cmpt 5115 Oncon0 6173 suc csuc 6175 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-ord 6176 df-on 6177 df-suc 6179 df-iota 6298 df-fun 6341 df-fv 6347 |
This theorem is referenced by: onsetrec 45701 |
Copyright terms: Public domain | W3C validator |