![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem2 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 47840. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem2.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem2 | ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
2 | 1 | onsetreclem1 47837 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
3 | vex 3476 | . . . 4 ⊢ 𝑎 ∈ V | |
4 | 3 | ssonunii 7770 | . . 3 ⊢ (𝑎 ⊆ On → ∪ 𝑎 ∈ On) |
5 | onsuc 7801 | . . 3 ⊢ (∪ 𝑎 ∈ On → suc ∪ 𝑎 ∈ On) | |
6 | prssi 4823 | . . 3 ⊢ ((∪ 𝑎 ∈ On ∧ suc ∪ 𝑎 ∈ On) → {∪ 𝑎, suc ∪ 𝑎} ⊆ On) | |
7 | 4, 5, 6 | syl2anc2 583 | . 2 ⊢ (𝑎 ⊆ On → {∪ 𝑎, suc ∪ 𝑎} ⊆ On) |
8 | 2, 7 | eqsstrid 4029 | 1 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3947 {cpr 4629 ∪ cuni 4907 ↦ cmpt 5230 Oncon0 6363 suc csuc 6365 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: onsetrec 47840 |
Copyright terms: Public domain | W3C validator |