![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsetreclem2 | Structured version Visualization version GIF version |
Description: Lemma for onsetrec 48800. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onsetreclem2.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) |
Ref | Expression |
---|---|
onsetreclem2 | ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {∪ 𝑥, suc ∪ 𝑥}) | |
2 | 1 | onsetreclem1 48797 | . 2 ⊢ (𝐹‘𝑎) = {∪ 𝑎, suc ∪ 𝑎} |
3 | vex 3492 | . . . 4 ⊢ 𝑎 ∈ V | |
4 | 3 | ssonunii 7816 | . . 3 ⊢ (𝑎 ⊆ On → ∪ 𝑎 ∈ On) |
5 | onsuc 7847 | . . 3 ⊢ (∪ 𝑎 ∈ On → suc ∪ 𝑎 ∈ On) | |
6 | prssi 4846 | . . 3 ⊢ ((∪ 𝑎 ∈ On ∧ suc ∪ 𝑎 ∈ On) → {∪ 𝑎, suc ∪ 𝑎} ⊆ On) | |
7 | 4, 5, 6 | syl2anc2 584 | . 2 ⊢ (𝑎 ⊆ On → {∪ 𝑎, suc ∪ 𝑎} ⊆ On) |
8 | 2, 7 | eqsstrid 4057 | 1 ⊢ (𝑎 ⊆ On → (𝐹‘𝑎) ⊆ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {cpr 4650 ∪ cuni 4931 ↦ cmpt 5249 Oncon0 6395 suc csuc 6397 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: onsetrec 48800 |
Copyright terms: Public domain | W3C validator |