Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem2 Structured version   Visualization version   GIF version

Theorem onsetreclem2 46297
Description: Lemma for onsetrec 46299. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem2.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem2 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem2
StepHypRef Expression
1 onsetreclem2.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
21onsetreclem1 46296 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
3 vex 3426 . . . 4 𝑎 ∈ V
43ssonunii 7608 . . 3 (𝑎 ⊆ On → 𝑎 ∈ On)
5 suceloni 7635 . . 3 ( 𝑎 ∈ On → suc 𝑎 ∈ On)
6 prssi 4751 . . 3 (( 𝑎 ∈ On ∧ suc 𝑎 ∈ On) → { 𝑎, suc 𝑎} ⊆ On)
74, 5, 6syl2anc2 584 . 2 (𝑎 ⊆ On → { 𝑎, suc 𝑎} ⊆ On)
82, 7eqsstrid 3965 1 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {cpr 4560   cuni 4836  cmpt 5153  Oncon0 6251  suc csuc 6253  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  onsetrec  46299
  Copyright terms: Public domain W3C validator