Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem2 Structured version   Visualization version   GIF version

Theorem onsetreclem2 47838
Description: Lemma for onsetrec 47840. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem2.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem2 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem2
StepHypRef Expression
1 onsetreclem2.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
21onsetreclem1 47837 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
3 vex 3476 . . . 4 𝑎 ∈ V
43ssonunii 7770 . . 3 (𝑎 ⊆ On → 𝑎 ∈ On)
5 onsuc 7801 . . 3 ( 𝑎 ∈ On → suc 𝑎 ∈ On)
6 prssi 4823 . . 3 (( 𝑎 ∈ On ∧ suc 𝑎 ∈ On) → { 𝑎, suc 𝑎} ⊆ On)
74, 5, 6syl2anc2 583 . 2 (𝑎 ⊆ On → { 𝑎, suc 𝑎} ⊆ On)
82, 7eqsstrid 4029 1 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3472  wss 3947  {cpr 4629   cuni 4907  cmpt 5230  Oncon0 6363  suc csuc 6365  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  onsetrec  47840
  Copyright terms: Public domain W3C validator