MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem6 Structured version   Visualization version   GIF version

Theorem ttukeylem6 10450
Description: Lemma for ttukey 10454. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem6 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem6
Dummy variables 𝑎 𝑦 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardon 9880 . . . . 5 (card‘( 𝐴𝐵)) ∈ On
21onsuci 7774 . . . 4 suc (card‘( 𝐴𝐵)) ∈ On
32a1i 11 . . 3 (𝜑 → suc (card‘( 𝐴𝐵)) ∈ On)
4 onelon 6342 . . 3 ((suc (card‘( 𝐴𝐵)) ∈ On ∧ 𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
53, 4sylan 580 . 2 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
6 eleq1 2825 . . . . . 6 (𝑦 = 𝑎 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝑎 ∈ suc (card‘( 𝐴𝐵))))
7 fveq2 6842 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
87eleq1d 2822 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝑎) ∈ 𝐴))
96, 8imbi12d 344 . . . . 5 (𝑦 = 𝑎 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
109imbi2d 340 . . . 4 (𝑦 = 𝑎 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴))))
11 eleq1 2825 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝐶 ∈ suc (card‘( 𝐴𝐵))))
12 fveq2 6842 . . . . . . 7 (𝑦 = 𝐶 → (𝐺𝑦) = (𝐺𝐶))
1312eleq1d 2822 . . . . . 6 (𝑦 = 𝐶 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝐶) ∈ 𝐴))
1411, 13imbi12d 344 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
1514imbi2d 340 . . . 4 (𝑦 = 𝐶 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴))))
16 r19.21v 3176 . . . . . 6 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) ↔ (𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
172onordi 6428 . . . . . . . . . . . . . . 15 Ord suc (card‘( 𝐴𝐵))
1817a1i 11 . . . . . . . . . . . . . 14 (𝜑 → Ord suc (card‘( 𝐴𝐵)))
19 ordelss 6333 . . . . . . . . . . . . . 14 ((Ord suc (card‘( 𝐴𝐵)) ∧ 𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2018, 19sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2120sselda 3944 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → 𝑎 ∈ suc (card‘( 𝐴𝐵)))
22 biimt 360 . . . . . . . . . . . 12 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2321, 22syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2423ralbidva 3172 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 ↔ ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
252onssi 7773 . . . . . . . . . . . . . 14 suc (card‘( 𝐴𝐵)) ⊆ On
26 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ suc (card‘( 𝐴𝐵)))
2725, 26sselid 3942 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ On)
28 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
29 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
30 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
31 ttukeylem.4 . . . . . . . . . . . . . 14 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
3228, 29, 30, 31ttukeylem3 10447 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3327, 32syldan 591 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3429ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑦 = ∅) → 𝐵𝐴)
35 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin))
3635elin2d 4159 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ Fin)
3735elin1d 4158 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ 𝒫 (𝐺𝑦))
3837elpwid 4569 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 (𝐺𝑦))
3931tfr1 8343 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 Fn On
40 fnfun 6602 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn On → Fun 𝐺)
41 funiunfv 7195 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐺 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦))
4239, 40, 41mp2b 10 . . . . . . . . . . . . . . . . . . . . . 22 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦)
4338, 42sseqtrrdi 3995 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 𝑣𝑦 (𝐺𝑣))
44 dfss3 3932 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣))
45 eliun 4958 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∃𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4645ralbii 3096 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4744, 46bitri 274 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4843, 47sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
49 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑓𝑢) → (𝐺𝑣) = (𝐺‘(𝑓𝑢)))
5049eleq2d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑓𝑢) → (𝑢 ∈ (𝐺𝑣) ↔ 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5150ac6sfi 9231 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5236, 48, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
53 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ∈ 𝐴))
54 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝜑)
55 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = ran 𝑓 → (𝐺𝑎) = (𝐺 ran 𝑓))
5655eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = ran 𝑓 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 ran 𝑓) ∈ 𝐴))
57 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
5857ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
59 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑓:𝑤𝑦)
6059adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤𝑦)
61 frn 6675 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑤𝑦 → ran 𝑓𝑦)
6260, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
6327ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ∈ On)
64 onss 7719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ On → 𝑦 ⊆ On)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ⊆ On)
6662, 65sstrd 3954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ⊆ On)
6736adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤 ∈ Fin)
6867adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ∈ Fin)
69 ffn 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑤𝑦𝑓 Fn 𝑤)
7060, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓 Fn 𝑤)
71 dffn4 6762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑤𝑓:𝑤onto→ran 𝑓)
7270, 71sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤onto→ran 𝑓)
73 fofi 9282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ Fin ∧ 𝑓:𝑤onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7468, 72, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ Fin)
75 dm0rn0 5880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
7659fdmd 6679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → dom 𝑓 = 𝑤)
7776eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (dom 𝑓 = ∅ ↔ 𝑤 = ∅))
7875, 77bitr3id 284 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 = ∅ ↔ 𝑤 = ∅))
7978necon3bid 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 ≠ ∅ ↔ 𝑤 ≠ ∅))
8079biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ≠ ∅)
81 ordunifi 9237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran 𝑓 ⊆ On ∧ ran 𝑓 ∈ Fin ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8266, 74, 80, 81syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8362, 82sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
8456, 58, 83rspcdva 3582 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → (𝐺 ran 𝑓) ∈ 𝐴)
85 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝜑)
8627ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ∈ On)
8786, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ⊆ On)
88 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝑤𝑦𝑢𝑤) → (𝑓𝑢) ∈ 𝑦)
8988adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ 𝑦)
9087, 89sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ On)
9161ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓𝑦)
9291, 87sstrd 3954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ⊆ On)
93 vex 3449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑓 ∈ V
9493rnex 7849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran 𝑓 ∈ V
9594ssonunii 7715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ran 𝑓 ⊆ On → ran 𝑓 ∈ On)
9692, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ∈ On)
9769ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑓 Fn 𝑤)
98 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑢𝑤)
99 fnfvelrn 7031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 Fn 𝑤𝑢𝑤) → (𝑓𝑢) ∈ ran 𝑓)
10097, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ ran 𝑓)
101 elssuni 4898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓𝑢) ∈ ran 𝑓 → (𝑓𝑢) ⊆ ran 𝑓)
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ⊆ ran 𝑓)
10328, 29, 30, 31ttukeylem5 10449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ ((𝑓𝑢) ∈ On ∧ ran 𝑓 ∈ On ∧ (𝑓𝑢) ⊆ ran 𝑓)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
10485, 90, 96, 102, 103syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
105104sseld 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
106105anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) ∧ 𝑢𝑤) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
107106ralimdva 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) → (∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢)) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
108107expimpd 454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
109108impr 455 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
110109adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
111 dfss3 3932 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ⊆ (𝐺 ran 𝑓) ↔ ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
112110, 111sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ⊆ (𝐺 ran 𝑓))
11328, 29, 30ttukeylem2 10446 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝐺 ran 𝑓) ∈ 𝐴𝑤 ⊆ (𝐺 ran 𝑓))) → 𝑤𝐴)
11454, 84, 112, 113syl12anc 835 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤𝐴)
115 0ss 4356 . . . . . . . . . . . . . . . . . . . . . . . . 25 ∅ ⊆ 𝐵
11628, 29, 30ttukeylem2 10446 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝐵𝐴 ∧ ∅ ⊆ 𝐵)) → ∅ ∈ 𝐴)
117115, 116mpanr2 702 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ∅ ∈ 𝐴)
11829, 117mpdan 685 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∅ ∈ 𝐴)
119118ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∅ ∈ 𝐴)
12053, 114, 119pm2.61ne 3030 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤𝐴)
121120expr 457 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
122121exlimdv 1936 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → (∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
12352, 122mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤𝐴)
124123ex 413 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) → 𝑤𝐴))
125124ssrdv 3950 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴)
12628, 29, 30ttukeylem1 10445 . . . . . . . . . . . . . . . . 17 (𝜑 → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
127126ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
128125, 127mpbird 256 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝐺𝑦) ∈ 𝐴)
129128adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ ¬ 𝑦 = ∅) → (𝐺𝑦) ∈ 𝐴)
13034, 129ifclda 4521 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ∈ 𝐴)
131 uneq2 4117 . . . . . . . . . . . . . . 15 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
132131eleq1d 2822 . . . . . . . . . . . . . 14 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
133 un0 4350 . . . . . . . . . . . . . . . 16 ((𝐺 𝑦) ∪ ∅) = (𝐺 𝑦)
134 uneq2 4117 . . . . . . . . . . . . . . . 16 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ ∅) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
135133, 134eqtr3id 2790 . . . . . . . . . . . . . . 15 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (𝐺 𝑦) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
136135eleq1d 2822 . . . . . . . . . . . . . 14 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
137 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴)
138 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
139138eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 𝑦) ∈ 𝐴))
140 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
141 vuniex 7676 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
142141sucid 6399 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
143 eloni 6327 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
144 orduniorsuc 7765 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
14527, 143, 1443syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
146145orcanai 1001 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
147142, 146eleqtrrid 2845 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
148139, 140, 147rspcdva 3582 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → (𝐺 𝑦) ∈ 𝐴)
149148adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ¬ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → (𝐺 𝑦) ∈ 𝐴)
150132, 136, 137, 149ifbothda 4524 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴)
151130, 150ifclda 4521 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) ∈ 𝐴)
15233, 151eqeltrd 2838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) ∈ 𝐴)
153152expr 457 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺𝑦) ∈ 𝐴))
15424, 153sylbird 259 . . . . . . . . 9 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
155154ex 413 . . . . . . . 8 (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴)))
156155com23 86 . . . . . . 7 (𝜑 → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
157156a2i 14 . . . . . 6 ((𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
15816, 157sylbi 216 . . . . 5 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
159158a1i 11 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴))))
16010, 15, 159tfis3 7794 . . 3 (𝐶 ∈ On → (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
161160impd 411 . 2 (𝐶 ∈ On → ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴))
1625, 161mpcom 38 1 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560  {csn 4586   cuni 4865   ciun 4954  cmpt 5188  dom cdm 5633  ran crn 5634  cima 5636  Ord word 6316  Oncon0 6317  suc csuc 6319  Fun wfun 6490   Fn wfn 6491  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  recscrecs 8316  Fincfn 8883  cardccrd 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-fin 8887  df-card 9875
This theorem is referenced by:  ttukeylem7  10451
  Copyright terms: Public domain W3C validator