MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem6 Structured version   Visualization version   GIF version

Theorem ttukeylem6 10128
Description: Lemma for ttukey 10132. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem6 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem6
Dummy variables 𝑎 𝑦 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardon 9560 . . . . 5 (card‘( 𝐴𝐵)) ∈ On
21onsuci 7617 . . . 4 suc (card‘( 𝐴𝐵)) ∈ On
32a1i 11 . . 3 (𝜑 → suc (card‘( 𝐴𝐵)) ∈ On)
4 onelon 6238 . . 3 ((suc (card‘( 𝐴𝐵)) ∈ On ∧ 𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
53, 4sylan 583 . 2 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
6 eleq1 2825 . . . . . 6 (𝑦 = 𝑎 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝑎 ∈ suc (card‘( 𝐴𝐵))))
7 fveq2 6717 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
87eleq1d 2822 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝑎) ∈ 𝐴))
96, 8imbi12d 348 . . . . 5 (𝑦 = 𝑎 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
109imbi2d 344 . . . 4 (𝑦 = 𝑎 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴))))
11 eleq1 2825 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝐶 ∈ suc (card‘( 𝐴𝐵))))
12 fveq2 6717 . . . . . . 7 (𝑦 = 𝐶 → (𝐺𝑦) = (𝐺𝐶))
1312eleq1d 2822 . . . . . 6 (𝑦 = 𝐶 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝐶) ∈ 𝐴))
1411, 13imbi12d 348 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
1514imbi2d 344 . . . 4 (𝑦 = 𝐶 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴))))
16 r19.21v 3098 . . . . . 6 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) ↔ (𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
172onordi 6318 . . . . . . . . . . . . . . 15 Ord suc (card‘( 𝐴𝐵))
1817a1i 11 . . . . . . . . . . . . . 14 (𝜑 → Ord suc (card‘( 𝐴𝐵)))
19 ordelss 6229 . . . . . . . . . . . . . 14 ((Ord suc (card‘( 𝐴𝐵)) ∧ 𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2018, 19sylan 583 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2120sselda 3901 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → 𝑎 ∈ suc (card‘( 𝐴𝐵)))
22 biimt 364 . . . . . . . . . . . 12 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2321, 22syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2423ralbidva 3117 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 ↔ ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
252onssi 7616 . . . . . . . . . . . . . 14 suc (card‘( 𝐴𝐵)) ⊆ On
26 simprl 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ suc (card‘( 𝐴𝐵)))
2725, 26sselid 3898 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ On)
28 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
29 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
30 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
31 ttukeylem.4 . . . . . . . . . . . . . 14 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
3228, 29, 30, 31ttukeylem3 10125 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3327, 32syldan 594 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3429ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑦 = ∅) → 𝐵𝐴)
35 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin))
3635elin2d 4113 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ Fin)
3735elin1d 4112 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ 𝒫 (𝐺𝑦))
3837elpwid 4524 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 (𝐺𝑦))
3931tfr1 8133 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 Fn On
40 fnfun 6479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn On → Fun 𝐺)
41 funiunfv 7061 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐺 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦))
4239, 40, 41mp2b 10 . . . . . . . . . . . . . . . . . . . . . 22 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦)
4338, 42sseqtrrdi 3952 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 𝑣𝑦 (𝐺𝑣))
44 dfss3 3888 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣))
45 eliun 4908 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∃𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4645ralbii 3088 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4744, 46bitri 278 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4843, 47sylib 221 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
49 fveq2 6717 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑓𝑢) → (𝐺𝑣) = (𝐺‘(𝑓𝑢)))
5049eleq2d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑓𝑢) → (𝑢 ∈ (𝐺𝑣) ↔ 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5150ac6sfi 8915 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5236, 48, 51syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
53 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ∈ 𝐴))
54 simp-4l 783 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝜑)
55 fveq2 6717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = ran 𝑓 → (𝐺𝑎) = (𝐺 ran 𝑓))
5655eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = ran 𝑓 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 ran 𝑓) ∈ 𝐴))
57 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
5857ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
59 simprrl 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑓:𝑤𝑦)
6059adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤𝑦)
61 frn 6552 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑤𝑦 → ran 𝑓𝑦)
6260, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
6327ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ∈ On)
64 onss 7568 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ On → 𝑦 ⊆ On)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ⊆ On)
6662, 65sstrd 3911 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ⊆ On)
6736adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤 ∈ Fin)
6867adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ∈ Fin)
69 ffn 6545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑤𝑦𝑓 Fn 𝑤)
7060, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓 Fn 𝑤)
71 dffn4 6639 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑤𝑓:𝑤onto→ran 𝑓)
7270, 71sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤onto→ran 𝑓)
73 fofi 8962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ Fin ∧ 𝑓:𝑤onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7468, 72, 73syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ Fin)
75 dm0rn0 5794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
7659fdmd 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → dom 𝑓 = 𝑤)
7776eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (dom 𝑓 = ∅ ↔ 𝑤 = ∅))
7875, 77bitr3id 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 = ∅ ↔ 𝑤 = ∅))
7978necon3bid 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 ≠ ∅ ↔ 𝑤 ≠ ∅))
8079biimpar 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ≠ ∅)
81 ordunifi 8921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran 𝑓 ⊆ On ∧ ran 𝑓 ∈ Fin ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8266, 74, 80, 81syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8362, 82sseldd 3902 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
8456, 58, 83rspcdva 3539 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → (𝐺 ran 𝑓) ∈ 𝐴)
85 simp-4l 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝜑)
8627ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ∈ On)
8786, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ⊆ On)
88 ffvelrn 6902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝑤𝑦𝑢𝑤) → (𝑓𝑢) ∈ 𝑦)
8988adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ 𝑦)
9087, 89sseldd 3902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ On)
9161ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓𝑦)
9291, 87sstrd 3911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ⊆ On)
93 vex 3412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑓 ∈ V
9493rnex 7690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran 𝑓 ∈ V
9594ssonunii 7565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ran 𝑓 ⊆ On → ran 𝑓 ∈ On)
9692, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ∈ On)
9769ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑓 Fn 𝑤)
98 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑢𝑤)
99 fnfvelrn 6901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 Fn 𝑤𝑢𝑤) → (𝑓𝑢) ∈ ran 𝑓)
10097, 98, 99syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ ran 𝑓)
101 elssuni 4851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓𝑢) ∈ ran 𝑓 → (𝑓𝑢) ⊆ ran 𝑓)
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ⊆ ran 𝑓)
10328, 29, 30, 31ttukeylem5 10127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ ((𝑓𝑢) ∈ On ∧ ran 𝑓 ∈ On ∧ (𝑓𝑢) ⊆ ran 𝑓)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
10485, 90, 96, 102, 103syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
105104sseld 3900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
106105anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) ∧ 𝑢𝑤) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
107106ralimdva 3100 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) → (∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢)) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
108107expimpd 457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
109108impr 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
110109adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
111 dfss3 3888 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ⊆ (𝐺 ran 𝑓) ↔ ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
112110, 111sylibr 237 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ⊆ (𝐺 ran 𝑓))
11328, 29, 30ttukeylem2 10124 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝐺 ran 𝑓) ∈ 𝐴𝑤 ⊆ (𝐺 ran 𝑓))) → 𝑤𝐴)
11454, 84, 112, 113syl12anc 837 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤𝐴)
115 0ss 4311 . . . . . . . . . . . . . . . . . . . . . . . . 25 ∅ ⊆ 𝐵
11628, 29, 30ttukeylem2 10124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝐵𝐴 ∧ ∅ ⊆ 𝐵)) → ∅ ∈ 𝐴)
117115, 116mpanr2 704 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ∅ ∈ 𝐴)
11829, 117mpdan 687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∅ ∈ 𝐴)
119118ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∅ ∈ 𝐴)
12053, 114, 119pm2.61ne 3027 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤𝐴)
121120expr 460 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
122121exlimdv 1941 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → (∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
12352, 122mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤𝐴)
124123ex 416 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) → 𝑤𝐴))
125124ssrdv 3907 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴)
12628, 29, 30ttukeylem1 10123 . . . . . . . . . . . . . . . . 17 (𝜑 → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
127126ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
128125, 127mpbird 260 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝐺𝑦) ∈ 𝐴)
129128adantr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ ¬ 𝑦 = ∅) → (𝐺𝑦) ∈ 𝐴)
13034, 129ifclda 4474 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ∈ 𝐴)
131 uneq2 4071 . . . . . . . . . . . . . . 15 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
132131eleq1d 2822 . . . . . . . . . . . . . 14 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
133 un0 4305 . . . . . . . . . . . . . . . 16 ((𝐺 𝑦) ∪ ∅) = (𝐺 𝑦)
134 uneq2 4071 . . . . . . . . . . . . . . . 16 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ ∅) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
135133, 134eqtr3id 2792 . . . . . . . . . . . . . . 15 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (𝐺 𝑦) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
136135eleq1d 2822 . . . . . . . . . . . . . 14 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
137 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴)
138 fveq2 6717 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
139138eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 𝑦) ∈ 𝐴))
140 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
141 vuniex 7527 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
142141sucid 6292 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
143 eloni 6223 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
144 orduniorsuc 7609 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
14527, 143, 1443syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
146145orcanai 1003 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
147142, 146eleqtrrid 2845 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
148139, 140, 147rspcdva 3539 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → (𝐺 𝑦) ∈ 𝐴)
149148adantr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ¬ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → (𝐺 𝑦) ∈ 𝐴)
150132, 136, 137, 149ifbothda 4477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴)
151130, 150ifclda 4474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) ∈ 𝐴)
15233, 151eqeltrd 2838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) ∈ 𝐴)
153152expr 460 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺𝑦) ∈ 𝐴))
15424, 153sylbird 263 . . . . . . . . 9 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
155154ex 416 . . . . . . . 8 (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴)))
156155com23 86 . . . . . . 7 (𝜑 → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
157156a2i 14 . . . . . 6 ((𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
15816, 157sylbi 220 . . . . 5 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
159158a1i 11 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴))))
16010, 15, 159tfis3 7636 . . 3 (𝐶 ∈ On → (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
161160impd 414 . 2 (𝐶 ∈ On → ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴))
1625, 161mpcom 38 1 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wex 1787  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237  ifcif 4439  𝒫 cpw 4513  {csn 4541   cuni 4819   ciun 4904  cmpt 5135  dom cdm 5551  ran crn 5552  cima 5554  Ord word 6212  Oncon0 6213  suc csuc 6215  Fun wfun 6374   Fn wfn 6375  wf 6376  ontowfo 6378  1-1-ontowf1o 6379  cfv 6380  recscrecs 8107  Fincfn 8626  cardccrd 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-fin 8630  df-card 9555
This theorem is referenced by:  ttukeylem7  10129
  Copyright terms: Public domain W3C validator