MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniordint Structured version   Visualization version   GIF version

Theorem uniordint 7777
Description: The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
uniordint.1 𝐴 ∈ V
Assertion
Ref Expression
uniordint (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem uniordint
StepHypRef Expression
1 uniordint.1 . . 3 𝐴 ∈ V
21ssonunii 7757 . 2 (𝐴 ⊆ On → 𝐴 ∈ On)
3 intmin 4932 . . 3 ( 𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = 𝐴)
4 unissb 4903 . . . . 5 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
54rabbii 3411 . . . 4 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
65inteqi 4914 . . 3 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
73, 6eqtr3di 2779 . 2 ( 𝐴 ∈ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
82, 7syl 17 1 (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914   cuni 4871   cint 4910  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator