![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniordint | Structured version Visualization version GIF version |
Description: The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
uniordint.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniordint | ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniordint.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | ssonunii 7765 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
3 | intmin 4965 | . . 3 ⊢ (∪ 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = ∪ 𝐴) | |
4 | unissb 4936 | . . . . 5 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
5 | 4 | rabbii 3432 | . . . 4 ⊢ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} |
6 | 5 | inteqi 4947 | . . 3 ⊢ ∩ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} |
7 | 3, 6 | eqtr3di 2781 | . 2 ⊢ (∪ 𝐴 ∈ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
8 | 2, 7 | syl 17 | 1 ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3055 {crab 3426 Vcvv 3468 ⊆ wss 3943 ∪ cuni 4902 ∩ cint 4943 Oncon0 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 df-on 6362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |