Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniordint Structured version   Visualization version   GIF version

Theorem uniordint 7503
 Description: The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
uniordint.1 𝐴 ∈ V
Assertion
Ref Expression
uniordint (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem uniordint
StepHypRef Expression
1 uniordint.1 . . 3 𝐴 ∈ V
21ssonunii 7484 . 2 (𝐴 ⊆ On → 𝐴 ∈ On)
3 unissb 4832 . . . . 5 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
43rabbii 3420 . . . 4 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
54inteqi 4842 . . 3 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
6 intmin 4858 . . 3 ( 𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = 𝐴)
75, 6syl5reqr 2848 . 2 ( 𝐴 ∈ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
82, 7syl 17 1 (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  Vcvv 3441   ⊆ wss 3881  ∪ cuni 4800  ∩ cint 4838  Oncon0 6159 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator