Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supnub | Structured version Visualization version GIF version |
Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.) |
Ref | Expression |
---|---|
supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
Ref | Expression |
---|---|
supnub | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | supcl.2 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
3 | 1, 2 | suplub 9180 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
4 | 3 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
5 | dfrex2 3168 | . . . 4 ⊢ (∃𝑧 ∈ 𝐵 𝐶𝑅𝑧 ↔ ¬ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) | |
6 | 4, 5 | syl6ib 250 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ¬ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧)) |
7 | 6 | con2d 134 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧 → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
8 | 7 | expimpd 453 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 Or wor 5501 supcsup 9160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-po 5502 df-so 5503 df-iota 6388 df-riota 7225 df-sup 9162 |
This theorem is referenced by: dgrlb 25378 supssd 31023 |
Copyright terms: Public domain | W3C validator |