|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > supnub | Structured version Visualization version GIF version | ||
| Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.) | 
| Ref | Expression | 
|---|---|
| supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) | 
| supcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | 
| Ref | Expression | 
|---|---|
| supnub | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | supmo.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | supcl.2 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 3 | 1, 2 | suplub 9500 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | 
| 4 | 3 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | 
| 5 | dfrex2 3073 | . . . 4 ⊢ (∃𝑧 ∈ 𝐵 𝐶𝑅𝑧 ↔ ¬ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) | |
| 6 | 4, 5 | imbitrdi 251 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ¬ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧)) | 
| 7 | 6 | con2d 134 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧 → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) | 
| 8 | 7 | expimpd 453 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 Or wor 5591 supcsup 9480 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-po 5592 df-so 5593 df-iota 6514 df-riota 7388 df-sup 9482 | 
| This theorem is referenced by: dgrlb 26275 supssd 32721 supinf 42283 | 
| Copyright terms: Public domain | W3C validator |