MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplub Structured version   Visualization version   GIF version

Theorem suplub 9287
Description: A supremum is the least upper bound. See also supcl 9285 and supub 9286. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
suplub (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦)

Proof of Theorem suplub
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
2 breq1 5088 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
3 breq1 5088 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦𝑅𝑧𝑤𝑅𝑧))
43rexbidv 3172 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑤𝑅𝑧))
52, 4imbi12d 344 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)))
65cbvralvw 3222 . . . . . . 7 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧))
71, 6sylib 217 . . . . . 6 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧))
87a1i 11 . . . . 5 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)))
98ss2rabi 4020 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)}
10 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
1110supval2 9282 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
12 supcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1310, 12supeu 9281 . . . . . 6 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
14 riotacl2 7287 . . . . . 6 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
1513, 14syl 17 . . . . 5 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
1611, 15eqeltrd 2838 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
179, 16sselid 3928 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)})
18 breq2 5089 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑤𝑅𝑥𝑤𝑅sup(𝐵, 𝐴, 𝑅)))
1918imbi1d 341 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → ((𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧) ↔ (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧)))
2019ralbidv 3171 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧) ↔ ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧)))
2120elrab 3633 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧)))
2221simprbi 497 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)} → ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧))
2317, 22syl 17 . 2 (𝜑 → ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧))
24 breq1 5088 . . . . 5 (𝑤 = 𝐶 → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
25 breq1 5088 . . . . . 6 (𝑤 = 𝐶 → (𝑤𝑅𝑧𝐶𝑅𝑧))
2625rexbidv 3172 . . . . 5 (𝑤 = 𝐶 → (∃𝑧𝐵 𝑤𝑅𝑧 ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
2724, 26imbi12d 344 . . . 4 (𝑤 = 𝐶 → ((𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧) ↔ (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧)))
2827rspccv 3567 . . 3 (∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧) → (𝐶𝐴 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧)))
2928impd 411 . 2 (∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧) → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
3023, 29syl 17 1 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071  ∃!wreu 3348  {crab 3404   class class class wbr 5085   Or wor 5518  crio 7269  supcsup 9267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-po 5519  df-so 5520  df-iota 6415  df-riota 7270  df-sup 9269
This theorem is referenced by:  suplub2  9288  supnub  9289  supiso  9302  infglb  9317  supxrun  13120  supxrunb1  13123  supxrunb2  13124  esum2d  32167
  Copyright terms: Public domain W3C validator