Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
2 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑥 ↔ 𝑤𝑅𝑥)) |
3 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑧 ↔ 𝑤𝑅𝑧)) |
4 | 3 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (∃𝑧 ∈ 𝐵 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
5 | 2, 4 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
6 | 5 | cbvralvw 3372 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
7 | 1, 6 | sylib 217 |
. . . . . 6
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
9 | 8 | ss2rabi 4006 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ⊆ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} |
10 | | supmo.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 Or 𝐴) |
11 | 10 | supval2 9144 |
. . . . 5
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
12 | | supcl.2 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
13 | 10, 12 | supeu 9143 |
. . . . . 6
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
14 | | riotacl2 7229 |
. . . . . 6
⊢
(∃!𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
16 | 11, 15 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
17 | 9, 16 | sselid 3915 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)}) |
18 | | breq2 5074 |
. . . . . . 7
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑤𝑅𝑥 ↔ 𝑤𝑅sup(𝐵, 𝐴, 𝑅))) |
19 | 18 | imbi1d 341 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → ((𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
20 | 19 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
21 | 20 | elrab 3617 |
. . . 4
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
22 | 21 | simprbi 496 |
. . 3
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} → ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
23 | 17, 22 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
24 | | breq1 5073 |
. . . . 5
⊢ (𝑤 = 𝐶 → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
25 | | breq1 5073 |
. . . . . 6
⊢ (𝑤 = 𝐶 → (𝑤𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
26 | 25 | rexbidv 3225 |
. . . . 5
⊢ (𝑤 = 𝐶 → (∃𝑧 ∈ 𝐵 𝑤𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
27 | 24, 26 | imbi12d 344 |
. . . 4
⊢ (𝑤 = 𝐶 → ((𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧))) |
28 | 27 | rspccv 3549 |
. . 3
⊢
(∀𝑤 ∈
𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) → (𝐶 ∈ 𝐴 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧))) |
29 | 28 | impd 410 |
. 2
⊢
(∀𝑤 ∈
𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
30 | 23, 29 | syl 17 |
1
⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |