MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplub Structured version   Visualization version   GIF version

Theorem suplub 9451
Description: A supremum is the least upper bound. See also supcl 9449 and supub 9450. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
suplub (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦)

Proof of Theorem suplub
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
2 breq1 5150 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
3 breq1 5150 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦𝑅𝑧𝑤𝑅𝑧))
43rexbidv 3178 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑤𝑅𝑧))
52, 4imbi12d 344 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)))
65cbvralvw 3234 . . . . . . 7 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧))
71, 6sylib 217 . . . . . 6 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧))
87a1i 11 . . . . 5 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)))
98ss2rabi 4073 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)}
10 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
1110supval2 9446 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
12 supcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1310, 12supeu 9445 . . . . . 6 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
14 riotacl2 7378 . . . . . 6 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
1513, 14syl 17 . . . . 5 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
1611, 15eqeltrd 2833 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
179, 16sselid 3979 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)})
18 breq2 5151 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑤𝑅𝑥𝑤𝑅sup(𝐵, 𝐴, 𝑅)))
1918imbi1d 341 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → ((𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧) ↔ (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧)))
2019ralbidv 3177 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧) ↔ ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧)))
2120elrab 3682 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧)))
2221simprbi 497 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑤𝐴 (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑤𝑅𝑧)} → ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧))
2317, 22syl 17 . 2 (𝜑 → ∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧))
24 breq1 5150 . . . . 5 (𝑤 = 𝐶 → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
25 breq1 5150 . . . . . 6 (𝑤 = 𝐶 → (𝑤𝑅𝑧𝐶𝑅𝑧))
2625rexbidv 3178 . . . . 5 (𝑤 = 𝐶 → (∃𝑧𝐵 𝑤𝑅𝑧 ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
2724, 26imbi12d 344 . . . 4 (𝑤 = 𝐶 → ((𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧) ↔ (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧)))
2827rspccv 3609 . . 3 (∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧) → (𝐶𝐴 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧)))
2928impd 411 . 2 (∀𝑤𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑤𝑅𝑧) → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
3023, 29syl 17 1 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  ∃!wreu 3374  {crab 3432   class class class wbr 5147   Or wor 5586  crio 7360  supcsup 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-po 5587  df-so 5588  df-iota 6492  df-riota 7361  df-sup 9433
This theorem is referenced by:  suplub2  9452  supnub  9453  supiso  9466  infglb  9481  supxrun  13291  supxrunb1  13294  supxrunb2  13295  esum2d  33079
  Copyright terms: Public domain W3C validator