MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlb Structured version   Visualization version   GIF version

Theorem dgrlb 26198
Description: If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrlb ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)

Proof of Theorem dgrlb
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrub.2 . . . . 5 𝑁 = (deg‘𝐹)
2 dgrcl 26195 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2eqeltrid 2839 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
433ad2ant1 1133 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℕ0)
54nn0red 12568 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℝ)
6 simp2 1137 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℕ0)
76nn0red 12568 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℝ)
8 dgrub.1 . . . . . . . . . . . . 13 𝐴 = (coeff‘𝐹)
98dgrlem 26191 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
109simpld 494 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
11103ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
12 ffn 6711 . . . . . . . . . 10 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
13 elpreima 7053 . . . . . . . . . 10 (𝐴 Fn ℕ0 → (𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0}))))
1411, 12, 133syl 18 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0}))))
1514biimpa 476 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0})))
1615simpld 494 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦 ∈ ℕ0)
1716nn0red 12568 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦 ∈ ℝ)
187adantr 480 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑀 ∈ ℝ)
19 eldifsni 4771 . . . . . . . 8 ((𝐴𝑦) ∈ (ℂ ∖ {0}) → (𝐴𝑦) ≠ 0)
2015, 19simpl2im 503 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → (𝐴𝑦) ≠ 0)
21 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
228coef3 26194 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
23223ad2ant1 1133 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶ℂ)
24 plyco0 26154 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀)))
256, 23, 24syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀)))
2621, 25mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2726r19.21bi 3238 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ ℕ0) → ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2816, 27syldan 591 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2920, 28mpd 15 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦𝑀)
3017, 18, 29lensymd 11391 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → ¬ 𝑀 < 𝑦)
3130ralrimiva 3133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦)
32 nn0ssre 12510 . . . . . . 7 0 ⊆ ℝ
33 ltso 11320 . . . . . . 7 < Or ℝ
34 soss 5586 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
3532, 33, 34mp2 9 . . . . . 6 < Or ℕ0
3635a1i 11 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → < Or ℕ0)
37 0zd 12605 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
38 cnvimass 6074 . . . . . . . 8 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
3938, 10fssdm 6730 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
409simprd 495 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
41 nn0uz 12899 . . . . . . . 8 0 = (ℤ‘0)
4241uzsupss 12961 . . . . . . 7 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
4337, 39, 40, 42syl3anc 1373 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
44433ad2ant1 1133 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
4536, 44supnub 9479 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ((𝑀 ∈ ℕ0 ∧ ∀𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) → ¬ 𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < )))
466, 31, 45mp2and 699 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
478dgrval 26190 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
481, 47eqtrid 2783 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
49483ad2ant1 1133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
5049breq2d 5136 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝑀 < 𝑁𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < )))
5146, 50mtbird 325 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < 𝑁)
525, 7, 51nltled 11390 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  cun 3929  wss 3931  {csn 4606   class class class wbr 5124   Or wor 5565  ccnv 5658  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  0cn0 12506  cz 12593  cuz 12857  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  coeidlem  26199  dgrle  26205  dgreq0  26228
  Copyright terms: Public domain W3C validator