MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlb Structured version   Visualization version   GIF version

Theorem dgrlb 25597
Description: If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrlb ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)

Proof of Theorem dgrlb
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrub.2 . . . . 5 𝑁 = (deg‘𝐹)
2 dgrcl 25594 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2eqeltrid 2842 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
433ad2ant1 1133 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℕ0)
54nn0red 12474 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℝ)
6 simp2 1137 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℕ0)
76nn0red 12474 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℝ)
8 dgrub.1 . . . . . . . . . . . . 13 𝐴 = (coeff‘𝐹)
98dgrlem 25590 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
109simpld 495 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
11103ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
12 ffn 6668 . . . . . . . . . 10 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
13 elpreima 7008 . . . . . . . . . 10 (𝐴 Fn ℕ0 → (𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0}))))
1411, 12, 133syl 18 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0}))))
1514biimpa 477 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0})))
1615simpld 495 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦 ∈ ℕ0)
1716nn0red 12474 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦 ∈ ℝ)
187adantr 481 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑀 ∈ ℝ)
19 eldifsni 4750 . . . . . . . 8 ((𝐴𝑦) ∈ (ℂ ∖ {0}) → (𝐴𝑦) ≠ 0)
2015, 19simpl2im 504 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → (𝐴𝑦) ≠ 0)
21 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
228coef3 25593 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
23223ad2ant1 1133 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶ℂ)
24 plyco0 25553 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀)))
256, 23, 24syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀)))
2621, 25mpbid 231 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2726r19.21bi 3234 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ ℕ0) → ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2816, 27syldan 591 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2920, 28mpd 15 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦𝑀)
3017, 18, 29lensymd 11306 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → ¬ 𝑀 < 𝑦)
3130ralrimiva 3143 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦)
32 nn0ssre 12417 . . . . . . 7 0 ⊆ ℝ
33 ltso 11235 . . . . . . 7 < Or ℝ
34 soss 5565 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
3532, 33, 34mp2 9 . . . . . 6 < Or ℕ0
3635a1i 11 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → < Or ℕ0)
37 0zd 12511 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
38 cnvimass 6033 . . . . . . . 8 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
3938, 10fssdm 6688 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
409simprd 496 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
41 nn0uz 12805 . . . . . . . 8 0 = (ℤ‘0)
4241uzsupss 12865 . . . . . . 7 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
4337, 39, 40, 42syl3anc 1371 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
44433ad2ant1 1133 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
4536, 44supnub 9398 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ((𝑀 ∈ ℕ0 ∧ ∀𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) → ¬ 𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < )))
466, 31, 45mp2and 697 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
478dgrval 25589 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
481, 47eqtrid 2788 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
49483ad2ant1 1133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
5049breq2d 5117 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝑀 < 𝑁𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < )))
5146, 50mtbird 324 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < 𝑁)
525, 7, 51nltled 11305 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cun 3908  wss 3910  {csn 4586   class class class wbr 5105   Or wor 5544  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  0cn0 12413  cz 12499  cuz 12763  Polycply 25545  coeffccoe 25547  degcdgr 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-coe 25551  df-dgr 25552
This theorem is referenced by:  coeidlem  25598  dgrle  25604  dgreq0  25626
  Copyright terms: Public domain W3C validator