MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlb Structured version   Visualization version   GIF version

Theorem dgrlb 26148
Description: If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
Assertion
Ref Expression
dgrlb ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)

Proof of Theorem dgrlb
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgrub.2 . . . . 5 𝑁 = (deg‘𝐹)
2 dgrcl 26145 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2eqeltrid 2833 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
433ad2ant1 1133 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℕ0)
54nn0red 12511 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℝ)
6 simp2 1137 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℕ0)
76nn0red 12511 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℝ)
8 dgrub.1 . . . . . . . . . . . . 13 𝐴 = (coeff‘𝐹)
98dgrlem 26141 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
109simpld 494 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
11103ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
12 ffn 6691 . . . . . . . . . 10 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
13 elpreima 7033 . . . . . . . . . 10 (𝐴 Fn ℕ0 → (𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0}))))
1411, 12, 133syl 18 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ↔ (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0}))))
1514biimpa 476 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → (𝑦 ∈ ℕ0 ∧ (𝐴𝑦) ∈ (ℂ ∖ {0})))
1615simpld 494 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦 ∈ ℕ0)
1716nn0red 12511 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦 ∈ ℝ)
187adantr 480 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑀 ∈ ℝ)
19 eldifsni 4757 . . . . . . . 8 ((𝐴𝑦) ∈ (ℂ ∖ {0}) → (𝐴𝑦) ≠ 0)
2015, 19simpl2im 503 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → (𝐴𝑦) ≠ 0)
21 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
228coef3 26144 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
23223ad2ant1 1133 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶ℂ)
24 plyco0 26104 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀)))
256, 23, 24syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀)))
2621, 25mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ ℕ0 ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2726r19.21bi 3230 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ ℕ0) → ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2816, 27syldan 591 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → ((𝐴𝑦) ≠ 0 → 𝑦𝑀))
2920, 28mpd 15 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → 𝑦𝑀)
3017, 18, 29lensymd 11332 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))) → ¬ 𝑀 < 𝑦)
3130ralrimiva 3126 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦)
32 nn0ssre 12453 . . . . . . 7 0 ⊆ ℝ
33 ltso 11261 . . . . . . 7 < Or ℝ
34 soss 5569 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
3532, 33, 34mp2 9 . . . . . 6 < Or ℕ0
3635a1i 11 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → < Or ℕ0)
37 0zd 12548 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
38 cnvimass 6056 . . . . . . . 8 (𝐴 “ (ℂ ∖ {0})) ⊆ dom 𝐴
3938, 10fssdm 6710 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0)
409simprd 495 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛)
41 nn0uz 12842 . . . . . . . 8 0 = (ℤ‘0)
4241uzsupss 12906 . . . . . . 7 ((0 ∈ ℤ ∧ (𝐴 “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
4337, 39, 40, 42syl3anc 1373 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
44433ad2ant1 1133 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦)))
4536, 44supnub 9420 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ((𝑀 ∈ ℕ0 ∧ ∀𝑦 ∈ (𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) → ¬ 𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < )))
466, 31, 45mp2and 699 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
478dgrval 26140 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
481, 47eqtrid 2777 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
49483ad2ant1 1133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁 = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
5049breq2d 5122 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → (𝑀 < 𝑁𝑀 < sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < )))
5146, 50mtbird 325 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < 𝑁)
525, 7, 51nltled 11331 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cun 3915  wss 3917  {csn 4592   class class class wbr 5110   Or wor 5548  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  0cn0 12449  cz 12536  cuz 12800  Polycply 26096  coeffccoe 26098  degcdgr 26099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103
This theorem is referenced by:  coeidlem  26149  dgrle  26155  dgreq0  26178
  Copyright terms: Public domain W3C validator