| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dgrub.2 | . . . . 5
⊢ 𝑁 = (deg‘𝐹) | 
| 2 |  | dgrcl 26273 | . . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) | 
| 3 | 1, 2 | eqeltrid 2844 | . . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) | 
| 4 | 3 | 3ad2ant1 1133 | . . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ∈
ℕ0) | 
| 5 | 4 | nn0red 12590 | . 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℝ) | 
| 6 |  | simp2 1137 | . . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑀 ∈
ℕ0) | 
| 7 | 6 | nn0red 12590 | . 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℝ) | 
| 8 |  | dgrub.1 | . . . . . . . . . . . . 13
⊢ 𝐴 = (coeff‘𝐹) | 
| 9 | 8 | dgrlem 26269 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) | 
| 10 | 9 | simpld 494 | . . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | 
| 11 | 10 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | 
| 12 |  | ffn 6735 | . . . . . . . . . 10
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn
ℕ0) | 
| 13 |  | elpreima 7077 | . . . . . . . . . 10
⊢ (𝐴 Fn ℕ0 →
(𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔
(𝑦 ∈
ℕ0 ∧ (𝐴‘𝑦) ∈ (ℂ ∖
{0})))) | 
| 14 | 11, 12, 13 | 3syl 18 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → (𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔
(𝑦 ∈
ℕ0 ∧ (𝐴‘𝑦) ∈ (ℂ ∖
{0})))) | 
| 15 | 14 | biimpa 476 | . . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
(𝑦 ∈
ℕ0 ∧ (𝐴‘𝑦) ∈ (ℂ ∖
{0}))) | 
| 16 | 15 | simpld 494 | . . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑦 ∈
ℕ0) | 
| 17 | 16 | nn0red 12590 | . . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑦 ∈
ℝ) | 
| 18 | 7 | adantr 480 | . . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑀 ∈
ℝ) | 
| 19 |  | eldifsni 4789 | . . . . . . . 8
⊢ ((𝐴‘𝑦) ∈ (ℂ ∖ {0}) → (𝐴‘𝑦) ≠ 0) | 
| 20 | 15, 19 | simpl2im 503 | . . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
(𝐴‘𝑦) ≠ 0) | 
| 21 |  | simp3 1138 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 22 | 8 | coef3 26272 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | 
| 23 | 22 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶ℂ) | 
| 24 |  | plyco0 26232 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀))) | 
| 25 | 6, 23, 24 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀))) | 
| 26 | 21, 25 | mpbid 232 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ ℕ0
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀)) | 
| 27 | 26 | r19.21bi 3250 | . . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ ℕ0) → ((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀)) | 
| 28 | 16, 27 | syldan 591 | . . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀)) | 
| 29 | 20, 28 | mpd 15 | . . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑦 ≤ 𝑀) | 
| 30 | 17, 18, 29 | lensymd 11413 | . . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
¬ 𝑀 < 𝑦) | 
| 31 | 30 | ralrimiva 3145 | . . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) | 
| 32 |  | nn0ssre 12532 | . . . . . . 7
⊢
ℕ0 ⊆ ℝ | 
| 33 |  | ltso 11342 | . . . . . . 7
⊢  < Or
ℝ | 
| 34 |  | soss 5611 | . . . . . . 7
⊢
(ℕ0 ⊆ ℝ → ( < Or ℝ →
< Or ℕ0)) | 
| 35 | 32, 33, 34 | mp2 9 | . . . . . 6
⊢  < Or
ℕ0 | 
| 36 | 35 | a1i 11 | . . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → < Or
ℕ0) | 
| 37 |  | 0zd 12627 | . . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈
ℤ) | 
| 38 |  | cnvimass 6099 | . . . . . . . 8
⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom
𝐴 | 
| 39 | 38, 10 | fssdm 6754 | . . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆
ℕ0) | 
| 40 | 9 | simprd 495 | . . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) | 
| 41 |  | nn0uz 12921 | . . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) | 
| 42 | 41 | uzsupss 12983 | . . . . . . 7
⊢ ((0
∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0}))
⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) | 
| 43 | 37, 39, 40, 42 | syl3anc 1372 | . . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0
(∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) | 
| 44 | 43 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ∃𝑛 ∈ ℕ0
(∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) | 
| 45 | 36, 44 | supnub 9503 | . . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ((𝑀 ∈ ℕ0 ∧
∀𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) → ¬ 𝑀 < sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < ))) | 
| 46 | 6, 31, 45 | mp2and 699 | . . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) | 
| 47 | 8 | dgrval 26268 | . . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) | 
| 48 | 1, 47 | eqtrid 2788 | . . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) | 
| 49 | 48 | 3ad2ant1 1133 | . . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) | 
| 50 | 49 | breq2d 5154 | . . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → (𝑀 < 𝑁 ↔ 𝑀 < sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < ))) | 
| 51 | 46, 50 | mtbird 325 | . 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < 𝑁) | 
| 52 | 5, 7, 51 | nltled 11412 | 1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) |