Step | Hyp | Ref
| Expression |
1 | | dgrub.2 |
. . . . 5
⊢ 𝑁 = (deg‘𝐹) |
2 | | dgrcl 25299 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
3 | 1, 2 | eqeltrid 2843 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
4 | 3 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ∈
ℕ0) |
5 | 4 | nn0red 12224 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ∈ ℝ) |
6 | | simp2 1135 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑀 ∈
ℕ0) |
7 | 6 | nn0red 12224 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑀 ∈ ℝ) |
8 | | dgrub.1 |
. . . . . . . . . . . . 13
⊢ 𝐴 = (coeff‘𝐹) |
9 | 8 | dgrlem 25295 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
10 | 9 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
11 | 10 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
12 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn
ℕ0) |
13 | | elpreima 6917 |
. . . . . . . . . 10
⊢ (𝐴 Fn ℕ0 →
(𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔
(𝑦 ∈
ℕ0 ∧ (𝐴‘𝑦) ∈ (ℂ ∖
{0})))) |
14 | 11, 12, 13 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → (𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ↔
(𝑦 ∈
ℕ0 ∧ (𝐴‘𝑦) ∈ (ℂ ∖
{0})))) |
15 | 14 | biimpa 476 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
(𝑦 ∈
ℕ0 ∧ (𝐴‘𝑦) ∈ (ℂ ∖
{0}))) |
16 | 15 | simpld 494 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑦 ∈
ℕ0) |
17 | 16 | nn0red 12224 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑦 ∈
ℝ) |
18 | 7 | adantr 480 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑀 ∈
ℝ) |
19 | | eldifsni 4720 |
. . . . . . . 8
⊢ ((𝐴‘𝑦) ∈ (ℂ ∖ {0}) → (𝐴‘𝑦) ≠ 0) |
20 | 15, 19 | simpl2im 503 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
(𝐴‘𝑦) ≠ 0) |
21 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
22 | 8 | coef3 25298 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
23 | 22 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝐴:ℕ0⟶ℂ) |
24 | | plyco0 25258 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀))) |
25 | 6, 23, 24 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑦 ∈ ℕ0
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀))) |
26 | 21, 25 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ ℕ0
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀)) |
27 | 26 | r19.21bi 3132 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ ℕ0) → ((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀)) |
28 | 16, 27 | syldan 590 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
((𝐴‘𝑦) ≠ 0 → 𝑦 ≤ 𝑀)) |
29 | 20, 28 | mpd 15 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
𝑦 ≤ 𝑀) |
30 | 17, 18, 29 | lensymd 11056 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) ∧ 𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))) →
¬ 𝑀 < 𝑦) |
31 | 30 | ralrimiva 3107 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ∀𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) |
32 | | nn0ssre 12167 |
. . . . . . 7
⊢
ℕ0 ⊆ ℝ |
33 | | ltso 10986 |
. . . . . . 7
⊢ < Or
ℝ |
34 | | soss 5514 |
. . . . . . 7
⊢
(ℕ0 ⊆ ℝ → ( < Or ℝ →
< Or ℕ0)) |
35 | 32, 33, 34 | mp2 9 |
. . . . . 6
⊢ < Or
ℕ0 |
36 | 35 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → < Or
ℕ0) |
37 | | 0zd 12261 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈
ℤ) |
38 | | cnvimass 5978 |
. . . . . . . 8
⊢ (◡𝐴 “ (ℂ ∖ {0})) ⊆ dom
𝐴 |
39 | 38, 10 | fssdm 6604 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → (◡𝐴 “ (ℂ ∖ {0})) ⊆
ℕ0) |
40 | 9 | simprd 495 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
41 | | nn0uz 12549 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
42 | 41 | uzsupss 12609 |
. . . . . . 7
⊢ ((0
∈ ℤ ∧ (◡𝐴 “ (ℂ ∖ {0}))
⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
43 | 37, 39, 40, 42 | syl3anc 1369 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0
(∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
44 | 43 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ∃𝑛 ∈ ℕ0
(∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
45 | 36, 44 | supnub 9151 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ((𝑀 ∈ ℕ0 ∧
∀𝑦 ∈ (◡𝐴 “ (ℂ ∖ {0})) ¬ 𝑀 < 𝑦) → ¬ 𝑀 < sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < ))) |
46 | 6, 31, 45 | mp2and 695 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) |
47 | 8 | dgrval 25294 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) |
48 | 1, 47 | syl5eq 2791 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) |
49 | 48 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 = sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < )) |
50 | 49 | breq2d 5082 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → (𝑀 < 𝑁 ↔ 𝑀 < sup((◡𝐴 “ (ℂ ∖ {0})),
ℕ0, < ))) |
51 | 46, 50 | mtbird 324 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → ¬ 𝑀 < 𝑁) |
52 | 5, 7, 51 | nltled 11055 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) |