| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supssd | Structured version Visualization version GIF version | ||
| Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| Ref | Expression |
|---|---|
| supssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| supssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| supssd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| supssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| supssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
| Ref | Expression |
|---|---|
| supssd | ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | supssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | |
| 3 | 1, 2 | supcl 9353 | . 2 ⊢ (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) |
| 4 | supssd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 5 | 4 | sseld 3929 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐶)) |
| 6 | 1, 2 | supub 9354 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
| 7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
| 8 | 7 | ralrimiv 3124 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) |
| 9 | supssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 10 | 1, 9 | supnub 9357 | . 2 ⊢ (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))) |
| 11 | 3, 8, 10 | mp2and 699 | 1 ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5095 Or wor 5528 supcsup 9335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-po 5529 df-so 5530 df-iota 6445 df-riota 7312 df-sup 9337 |
| This theorem is referenced by: xrsupssd 13239 |
| Copyright terms: Public domain | W3C validator |