Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > supssd | Structured version Visualization version GIF version |
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
supssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
supssd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
supssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
supssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
Ref | Expression |
---|---|
supssd | ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | supssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | |
3 | 1, 2 | supcl 9315 | . 2 ⊢ (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) |
4 | supssd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
5 | 4 | sseld 3931 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐶)) |
6 | 1, 2 | supub 9316 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
8 | 7 | ralrimiv 3138 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) |
9 | supssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
10 | 1, 9 | supnub 9319 | . 2 ⊢ (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 696 | 1 ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ⊆ wss 3898 class class class wbr 5092 Or wor 5531 supcsup 9297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-po 5532 df-so 5533 df-iota 6431 df-riota 7293 df-sup 9299 |
This theorem is referenced by: xrsupssd 31369 |
Copyright terms: Public domain | W3C validator |