![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supssd | Structured version Visualization version GIF version |
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
supssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
supssd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
supssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
supssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
Ref | Expression |
---|---|
supssd | ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | supssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | |
3 | 1, 2 | supcl 9452 | . 2 ⊢ (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) |
4 | supssd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
5 | 4 | sseld 3981 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐶)) |
6 | 1, 2 | supub 9453 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
8 | 7 | ralrimiv 3145 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) |
9 | supssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
10 | 1, 9 | supnub 9456 | . 2 ⊢ (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 697 | 1 ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 class class class wbr 5148 Or wor 5587 supcsup 9434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-po 5588 df-so 5589 df-iota 6495 df-riota 7364 df-sup 9436 |
This theorem is referenced by: xrsupssd 31967 |
Copyright terms: Public domain | W3C validator |