Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supssd Structured version   Visualization version   GIF version

Theorem supssd 30222
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
supssd.0 (𝜑𝑅 Or 𝐴)
supssd.1 (𝜑𝐵𝐶)
supssd.2 (𝜑𝐶𝐴)
supssd.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
supssd.4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supssd (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem supssd
StepHypRef Expression
1 supssd.0 . . 3 (𝜑𝑅 Or 𝐴)
2 supssd.4 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
31, 2supcl 8716 . 2 (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴)
4 supssd.1 . . . . 5 (𝜑𝐵𝐶)
54sseld 3852 . . . 4 (𝜑 → (𝑧𝐵𝑧𝐶))
61, 2supub 8717 . . . 4 (𝜑 → (𝑧𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
75, 6syld 47 . . 3 (𝜑 → (𝑧𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
87ralrimiv 3126 . 2 (𝜑 → ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)
9 supssd.3 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
101, 9supnub 8720 . 2 (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)))
113, 8, 10mp2and 687 1 (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wcel 2051  wral 3083  wrex 3084  wss 3824   class class class wbr 4926   Or wor 5322  supcsup 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-po 5323  df-so 5324  df-iota 6150  df-riota 6936  df-sup 8700
This theorem is referenced by:  xrsupssd  30260
  Copyright terms: Public domain W3C validator