Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supssd Structured version   Visualization version   GIF version

Theorem supssd 30946
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
supssd.0 (𝜑𝑅 Or 𝐴)
supssd.1 (𝜑𝐵𝐶)
supssd.2 (𝜑𝐶𝐴)
supssd.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
supssd.4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supssd (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem supssd
StepHypRef Expression
1 supssd.0 . . 3 (𝜑𝑅 Or 𝐴)
2 supssd.4 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
31, 2supcl 9147 . 2 (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴)
4 supssd.1 . . . . 5 (𝜑𝐵𝐶)
54sseld 3916 . . . 4 (𝜑 → (𝑧𝐵𝑧𝐶))
61, 2supub 9148 . . . 4 (𝜑 → (𝑧𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
75, 6syld 47 . . 3 (𝜑 → (𝑧𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧))
87ralrimiv 3106 . 2 (𝜑 → ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)
9 supssd.3 . . 3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
101, 9supnub 9151 . 2 (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)))
113, 8, 10mp2and 695 1 (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070   Or wor 5493  supcsup 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-po 5494  df-so 5495  df-iota 6376  df-riota 7212  df-sup 9131
This theorem is referenced by:  xrsupssd  30984
  Copyright terms: Public domain W3C validator