MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgplacthmeo Structured version   Visualization version   GIF version

Theorem tgplacthmeo 23162
Description: The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgplacthmeo ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tgplacthmeo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tgptmd 23138 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgplacthmeo.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
3 tgplacthmeo.2 . . . 4 𝑋 = (Base‘𝐺)
4 tgplacthmeo.3 . . . 4 + = (+g𝐺)
5 tgplacthmeo.4 . . . 4 𝐽 = (TopOpen‘𝐺)
62, 3, 4, 5tmdlactcn 23161 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
71, 6sylan 579 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
8 tgpgrp 23137 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
9 eqid 2738 . . . . . . 7 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
10 eqid 2738 . . . . . . 7 (invg𝐺) = (invg𝐺)
119, 3, 4, 10grplactcnv 18593 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
128, 11sylan 579 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1312simprd 495 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
149, 3grplactfval 18591 . . . . . . 7 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1514adantl 481 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1615, 2eqtr4di 2797 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
1716cnveqd 5773 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
183, 10grpinvcl 18542 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
198, 18sylan 579 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
209, 3grplactfval 18591 . . . . 5 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2213, 17, 213eqtr3d 2786 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
23 eqid 2738 . . . . 5 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2423, 3, 4, 5tmdlactcn 23161 . . . 4 ((𝐺 ∈ TopMnd ∧ ((invg𝐺)‘𝐴) ∈ 𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
251, 19, 24syl2an2r 681 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
2622, 25eqeltrd 2839 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 ishmeo 22818 . 2 (𝐹 ∈ (𝐽Homeo𝐽) ↔ (𝐹 ∈ (𝐽 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐽)))
287, 26, 27sylanbrc 582 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  ccnv 5579  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  TopOpenctopn 17049  Grpcgrp 18492  invgcminusg 18493   Cn ccn 22283  Homeochmeo 22812  TopMndctmd 23129  TopGrpctgp 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-0g 17069  df-topgen 17071  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814  df-tmd 23131  df-tgp 23132
This theorem is referenced by:  subgntr  23166  opnsubg  23167  cldsubg  23170  tgpconncompeqg  23171  tgpconncomp  23172  snclseqg  23175  qustgpopn  23179  tsmsxplem1  23212
  Copyright terms: Public domain W3C validator