Step | Hyp | Ref
| Expression |
1 | | tgptmd 23230 |
. . 3
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
2 | | tgplacthmeo.1 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) |
3 | | tgplacthmeo.2 |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
4 | | tgplacthmeo.3 |
. . . 4
⊢ + =
(+g‘𝐺) |
5 | | tgplacthmeo.4 |
. . . 4
⊢ 𝐽 = (TopOpen‘𝐺) |
6 | 2, 3, 4, 5 | tmdlactcn 23253 |
. . 3
⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
7 | 1, 6 | sylan 580 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) |
8 | | tgpgrp 23229 |
. . . . . 6
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
9 | | eqid 2738 |
. . . . . . 7
⊢ (𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥))) = (𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥))) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
11 | 9, 3, 4, 10 | grplactcnv 18678 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)))) |
12 | 8, 11 | sylan 580 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → (((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)))) |
13 | 12 | simprd 496 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴))) |
14 | 9, 3 | grplactfval 18676 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑋 → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
15 | 14 | adantl 482 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
16 | 15, 2 | eqtr4di 2796 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹) |
17 | 16 | cnveqd 5784 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ◡𝐹) |
18 | 3, 10 | grpinvcl 18627 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
19 | 8, 18 | sylan 580 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
20 | 9, 3 | grplactfval 18676 |
. . . . 5
⊢
(((invg‘𝐺)‘𝐴) ∈ 𝑋 → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
22 | 13, 17, 21 | 3eqtr3d 2786 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ◡𝐹 = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
23 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) |
24 | 23, 3, 4, 5 | tmdlactcn 23253 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧
((invg‘𝐺)‘𝐴) ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽)) |
25 | 1, 19, 24 | syl2an2r 682 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽)) |
26 | 22, 25 | eqeltrd 2839 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ◡𝐹 ∈ (𝐽 Cn 𝐽)) |
27 | | ishmeo 22910 |
. 2
⊢ (𝐹 ∈ (𝐽Homeo𝐽) ↔ (𝐹 ∈ (𝐽 Cn 𝐽) ∧ ◡𝐹 ∈ (𝐽 Cn 𝐽))) |
28 | 7, 26, 27 | sylanbrc 583 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽Homeo𝐽)) |