Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgplacthmeo Structured version   Visualization version   GIF version

Theorem tgplacthmeo 22706
 Description: The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgplacthmeo ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tgplacthmeo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tgptmd 22682 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgplacthmeo.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
3 tgplacthmeo.2 . . . 4 𝑋 = (Base‘𝐺)
4 tgplacthmeo.3 . . . 4 + = (+g𝐺)
5 tgplacthmeo.4 . . . 4 𝐽 = (TopOpen‘𝐺)
62, 3, 4, 5tmdlactcn 22705 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
71, 6sylan 583 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
8 tgpgrp 22681 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
9 eqid 2822 . . . . . . 7 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
10 eqid 2822 . . . . . . 7 (invg𝐺) = (invg𝐺)
119, 3, 4, 10grplactcnv 18193 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
128, 11sylan 583 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1312simprd 499 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
149, 3grplactfval 18191 . . . . . . 7 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1514adantl 485 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1615, 2eqtr4di 2875 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
1716cnveqd 5723 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
183, 10grpinvcl 18142 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
198, 18sylan 583 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
209, 3grplactfval 18191 . . . . 5 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2213, 17, 213eqtr3d 2865 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
23 eqid 2822 . . . . 5 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2423, 3, 4, 5tmdlactcn 22705 . . . 4 ((𝐺 ∈ TopMnd ∧ ((invg𝐺)‘𝐴) ∈ 𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
251, 19, 24syl2an2r 684 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
2622, 25eqeltrd 2914 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 ishmeo 22362 . 2 (𝐹 ∈ (𝐽Homeo𝐽) ↔ (𝐹 ∈ (𝐽 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐽)))
287, 26, 27sylanbrc 586 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ↦ cmpt 5122  ◡ccnv 5531  –1-1-onto→wf1o 6333  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  TopOpenctopn 16686  Grpcgrp 18094  invgcminusg 18095   Cn ccn 21827  Homeochmeo 22356  TopMndctmd 22673  TopGrpctgp 22674 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-map 8395  df-0g 16706  df-topgen 16708  df-plusf 17842  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cn 21830  df-cnp 21831  df-tx 22165  df-hmeo 22358  df-tmd 22675  df-tgp 22676 This theorem is referenced by:  subgntr  22710  opnsubg  22711  cldsubg  22714  tgpconncompeqg  22715  tgpconncomp  22716  snclseqg  22719  qustgpopn  22723  tsmsxplem1  22756
 Copyright terms: Public domain W3C validator