MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgplacthmeo Structured version   Visualization version   GIF version

Theorem tgplacthmeo 22276
Description: The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgplacthmeo.1 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
tgplacthmeo.2 𝑋 = (Base‘𝐺)
tgplacthmeo.3 + = (+g𝐺)
tgplacthmeo.4 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgplacthmeo ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐽   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tgplacthmeo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tgptmd 22252 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgplacthmeo.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (𝐴 + 𝑥))
3 tgplacthmeo.2 . . . 4 𝑋 = (Base‘𝐺)
4 tgplacthmeo.3 . . . 4 + = (+g𝐺)
5 tgplacthmeo.4 . . . 4 𝐽 = (TopOpen‘𝐺)
62, 3, 4, 5tmdlactcn 22275 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
71, 6sylan 577 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
8 tgpgrp 22251 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
9 eqid 2824 . . . . . . 7 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
10 eqid 2824 . . . . . . 7 (invg𝐺) = (invg𝐺)
119, 3, 4, 10grplactcnv 17871 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
128, 11sylan 577 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1312simprd 491 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
149, 3grplactfval 17869 . . . . . . 7 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1514adantl 475 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1615, 2syl6eqr 2878 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
1716cnveqd 5529 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = 𝐹)
183, 10grpinvcl 17820 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
198, 18sylan 577 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
209, 3grplactfval 17869 . . . . 5 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2213, 17, 213eqtr3d 2868 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
23 eqid 2824 . . . . . 6 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2423, 3, 4, 5tmdlactcn 22275 . . . . 5 ((𝐺 ∈ TopMnd ∧ ((invg𝐺)‘𝐴) ∈ 𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
251, 24sylan 577 . . . 4 ((𝐺 ∈ TopGrp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
2619, 25syldan 587 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) ∈ (𝐽 Cn 𝐽))
2722, 26eqeltrd 2905 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽))
28 ishmeo 21932 . 2 (𝐹 ∈ (𝐽Homeo𝐽) ↔ (𝐹 ∈ (𝐽 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐽)))
297, 27, 28sylanbrc 580 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cmpt 4951  ccnv 5340  1-1-ontowf1o 6121  cfv 6122  (class class class)co 6904  Basecbs 16221  +gcplusg 16304  TopOpenctopn 16434  Grpcgrp 17775  invgcminusg 17776   Cn ccn 21398  Homeochmeo 21926  TopMndctmd 22243  TopGrpctgp 22244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-1st 7427  df-2nd 7428  df-map 8123  df-0g 16454  df-topgen 16456  df-plusf 17593  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-grp 17778  df-minusg 17779  df-top 21068  df-topon 21085  df-topsp 21107  df-bases 21120  df-cn 21401  df-cnp 21402  df-tx 21735  df-hmeo 21928  df-tmd 22245  df-tgp 22246
This theorem is referenced by:  subgntr  22279  opnsubg  22280  cldsubg  22283  tgpconncompeqg  22284  tgpconncomp  22285  snclseqg  22288  qustgpopn  22292  tsmsxplem1  22325
  Copyright terms: Public domain W3C validator