Step | Hyp | Ref
| Expression |
1 | | nsgsubg 18574 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
2 | | subgntr.h |
. . . 4
⊢ 𝐽 = (TopOpen‘𝐺) |
3 | 2 | clssubg 23006 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) |
4 | 1, 3 | sylan2 596 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) |
5 | | df-ima 5564 |
. . . . . . 7
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) |
6 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐺) =
(Base‘𝐺) |
7 | 2, 6 | tgptopon 22979 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
8 | 7 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | | topontop 21810 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ Top) |
11 | 1 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺)) |
12 | 6 | subgss 18544 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
14 | | toponuni 21811 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
15 | 8, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
16 | 13, 15 | sseqtrd 3941 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ ∪ 𝐽) |
17 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
18 | 17 | clsss3 21956 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
19 | 10, 16, 18 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
20 | 19, 15 | sseqtrrd 3942 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
21 | 20 | resmptd 5908 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
22 | 21 | rneqd 5807 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
23 | 5, 22 | syl5eq 2790 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
24 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
25 | | tgptmd 22976 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
26 | 25 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐺 ∈ TopMnd) |
27 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
28 | 8, 8, 27 | cnmptc 22559 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
29 | 8 | cnmptid 22558 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽)) |
30 | 2, 24, 26, 8, 28, 29 | cnmpt1plusg 22984 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽 Cn 𝐽)) |
31 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) |
32 | 2, 31 | tgpsubcn 22987 |
. . . . . . . . . 10
⊢ (𝐺 ∈ TopGrp →
(-g‘𝐺)
∈ ((𝐽
×t 𝐽) Cn
𝐽)) |
33 | 32 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
34 | 8, 30, 28, 33 | cnmpt12f 22563 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽)) |
35 | 17 | cnclsi 22169 |
. . . . . . . 8
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 ⊆ ∪ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆))) |
36 | 34, 16, 35 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆))) |
37 | | df-ima 5564 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) |
38 | 13 | resmptd 5908 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
39 | 38 | rneqd 5807 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
40 | 37, 39 | syl5eq 2790 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
41 | 6, 24, 31 | nsgconj 18575 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) |
42 | 41 | ad4ant234 1177 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) |
43 | 42 | fmpttd 6932 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):𝑆⟶𝑆) |
44 | 43 | frnd 6553 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ 𝑆) |
45 | 40, 44 | eqsstrd 3939 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) |
46 | 17 | clsss 21951 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ ((𝑦 ∈
(Base‘𝐺) ↦
((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) |
47 | 10, 16, 45, 46 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) |
48 | 36, 47 | sstrd 3911 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) |
49 | 23, 48 | eqsstrrd 3940 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)) |
50 | | ovex 7246 |
. . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V |
51 | | eqid 2737 |
. . . . . . 7
⊢ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) |
52 | 50, 51 | fnmpti 6521 |
. . . . . 6
⊢ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) |
53 | | df-f 6384 |
. . . . . 6
⊢ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) ∧ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))) |
54 | 52, 53 | mpbiran 709 |
. . . . 5
⊢ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)) |
55 | 49, 54 | sylibr 237 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆)) |
56 | 51 | fmpt 6927 |
. . . 4
⊢
(∀𝑦 ∈
((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆)) |
57 | 55, 56 | sylibr 237 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)) |
58 | 57 | ralrimiva 3105 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)) |
59 | 6, 24, 31 | isnsg3 18576 |
. 2
⊢
(((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))) |
60 | 4, 58, 59 | sylanbrc 586 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) |