MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsnsg Structured version   Visualization version   GIF version

Theorem clsnsg 24105
Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
clsnsg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺))

Proof of Theorem clsnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 19152 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgntr.h . . . 4 𝐽 = (TopOpen‘𝐺)
32clssubg 24104 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
41, 3sylan2 591 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
5 df-ima 5695 . . . . . . 7 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆))
6 eqid 2726 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
72, 6tgptopon 24077 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
87ad2antrr 724 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 topontop 22906 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ Top)
111ad2antlr 725 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
126subgss 19121 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1311, 12syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
14 toponuni 22907 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
158, 14syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (Base‘𝐺) = 𝐽)
1613, 15sseqtrd 4020 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 𝐽)
17 eqid 2726 . . . . . . . . . . . 12 𝐽 = 𝐽
1817clsss3 23054 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1910, 16, 18syl2anc 582 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2019, 15sseqtrrd 4021 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 6049 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
2221rneqd 5944 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
235, 22eqtrid 2778 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
24 eqid 2726 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
25 tgptmd 24074 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2625ad2antrr 724 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐺 ∈ TopMnd)
27 simpr 483 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
288, 8, 27cnmptc 23657 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
298cnmptid 23656 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
302, 24, 26, 8, 28, 29cnmpt1plusg 24082 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽 Cn 𝐽))
31 eqid 2726 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
322, 31tgpsubcn 24085 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3332ad2antrr 724 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
348, 30, 28, 33cnmpt12f 23661 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽))
3517cnclsi 23267 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)))
3634, 16, 35syl2anc 582 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)))
37 df-ima 5695 . . . . . . . . . 10 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆)
3813resmptd 6049 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆) = (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
3938rneqd 5944 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆) = ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
4037, 39eqtrid 2778 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) = ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
416, 24, 31nsgconj 19153 . . . . . . . . . . . 12 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑆)
4241ad4ant234 1172 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑆)
4342fmpttd 7129 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):𝑆𝑆)
4443frnd 6736 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ 𝑆)
4540, 44eqsstrd 4018 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) ⊆ 𝑆)
4617clsss 23049 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4710, 16, 45, 46syl3anc 1368 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4836, 47sstrd 3990 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4923, 48eqsstrrd 4019 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))
50 ovex 7457 . . . . . . 7 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ V
51 eqid 2726 . . . . . . 7 (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥))
5250, 51fnmpti 6704 . . . . . 6 (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆)
53 df-f 6558 . . . . . 6 ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) ∧ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)))
5452, 53mpbiran 707 . . . . 5 ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))
5549, 54sylibr 233 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆))
5651fmpt 7124 . . . 4 (∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆))
5755, 56sylibr 233 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))
5857ralrimiva 3136 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))
596, 24, 31isnsg3 19154 . 2 (((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)))
604, 58, 59sylanbrc 581 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wss 3947   cuni 4913  cmpt 5236  ran crn 5683  cres 5684  cima 5685   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  Basecbs 17213  +gcplusg 17266  TopOpenctopn 17436  -gcsg 18930  SubGrpcsubg 19114  NrmSGrpcnsg 19115  Topctop 22886  TopOnctopon 22903  clsccl 23013   Cn ccn 23219   ×t ctx 23555  TopMndctmd 24065  TopGrpctgp 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-0g 17456  df-topgen 17458  df-plusf 18632  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-nsg 19118  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-cn 23222  df-cnp 23223  df-tx 23557  df-tmd 24067  df-tgp 24068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator