| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nsgsubg 19176 | . . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | 
| 2 |  | subgntr.h | . . . 4
⊢ 𝐽 = (TopOpen‘𝐺) | 
| 3 | 2 | clssubg 24117 | . . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) | 
| 4 | 1, 3 | sylan2 593 | . 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) | 
| 5 |  | df-ima 5698 | . . . . . . 7
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) | 
| 6 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 7 | 2, 6 | tgptopon 24090 | . . . . . . . . . . . . 13
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) | 
| 8 | 7 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) | 
| 9 |  | topontop 22919 | . . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) | 
| 10 | 8, 9 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ Top) | 
| 11 | 1 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺)) | 
| 12 | 6 | subgss 19145 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) | 
| 13 | 11, 12 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) | 
| 14 |  | toponuni 22920 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | 
| 15 | 8, 14 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) | 
| 16 | 13, 15 | sseqtrd 4020 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ ∪ 𝐽) | 
| 17 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 18 | 17 | clsss3 23067 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) | 
| 19 | 10, 16, 18 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) | 
| 20 | 19, 15 | sseqtrrd 4021 | . . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) | 
| 21 | 20 | resmptd 6058 | . . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) | 
| 22 | 21 | rneqd 5949 | . . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) | 
| 23 | 5, 22 | eqtrid 2789 | . . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) | 
| 24 |  | eqid 2737 | . . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 25 |  | tgptmd 24087 | . . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | 
| 26 | 25 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐺 ∈ TopMnd) | 
| 27 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) | 
| 28 | 8, 8, 27 | cnmptc 23670 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) | 
| 29 | 8 | cnmptid 23669 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽)) | 
| 30 | 2, 24, 26, 8, 28, 29 | cnmpt1plusg 24095 | . . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽 Cn 𝐽)) | 
| 31 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) | 
| 32 | 2, 31 | tgpsubcn 24098 | . . . . . . . . . 10
⊢ (𝐺 ∈ TopGrp →
(-g‘𝐺)
∈ ((𝐽
×t 𝐽) Cn
𝐽)) | 
| 33 | 32 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | 
| 34 | 8, 30, 28, 33 | cnmpt12f 23674 | . . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽)) | 
| 35 | 17 | cnclsi 23280 | . . . . . . . 8
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 ⊆ ∪ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆))) | 
| 36 | 34, 16, 35 | syl2anc 584 | . . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆))) | 
| 37 |  | df-ima 5698 | . . . . . . . . . 10
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) | 
| 38 | 13 | resmptd 6058 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) | 
| 39 | 38 | rneqd 5949 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) | 
| 40 | 37, 39 | eqtrid 2789 | . . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) | 
| 41 | 6, 24, 31 | nsgconj 19177 | . . . . . . . . . . . 12
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) | 
| 42 | 41 | ad4ant234 1176 | . . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) | 
| 43 | 42 | fmpttd 7135 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):𝑆⟶𝑆) | 
| 44 | 43 | frnd 6744 | . . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ 𝑆) | 
| 45 | 40, 44 | eqsstrd 4018 | . . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) | 
| 46 | 17 | clsss 23062 | . . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ ((𝑦 ∈
(Base‘𝐺) ↦
((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) | 
| 47 | 10, 16, 45, 46 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) | 
| 48 | 36, 47 | sstrd 3994 | . . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) | 
| 49 | 23, 48 | eqsstrrd 4019 | . . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)) | 
| 50 |  | ovex 7464 | . . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V | 
| 51 |  | eqid 2737 | . . . . . . 7
⊢ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) | 
| 52 | 50, 51 | fnmpti 6711 | . . . . . 6
⊢ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) | 
| 53 |  | df-f 6565 | . . . . . 6
⊢ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) ∧ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))) | 
| 54 | 52, 53 | mpbiran 709 | . . . . 5
⊢ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)) | 
| 55 | 49, 54 | sylibr 234 | . . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆)) | 
| 56 | 51 | fmpt 7130 | . . . 4
⊢
(∀𝑦 ∈
((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆)) | 
| 57 | 55, 56 | sylibr 234 | . . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)) | 
| 58 | 57 | ralrimiva 3146 | . 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)) | 
| 59 | 6, 24, 31 | isnsg3 19178 | . 2
⊢
(((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))) | 
| 60 | 4, 58, 59 | sylanbrc 583 | 1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) |