MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsnsg Structured version   Visualization version   GIF version

Theorem clsnsg 23007
Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
clsnsg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺))

Proof of Theorem clsnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 18574 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgntr.h . . . 4 𝐽 = (TopOpen‘𝐺)
32clssubg 23006 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
41, 3sylan2 596 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
5 df-ima 5564 . . . . . . 7 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆))
6 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
72, 6tgptopon 22979 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
87ad2antrr 726 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 topontop 21810 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ Top)
111ad2antlr 727 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
126subgss 18544 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1311, 12syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
14 toponuni 21811 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
158, 14syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (Base‘𝐺) = 𝐽)
1613, 15sseqtrd 3941 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 𝐽)
17 eqid 2737 . . . . . . . . . . . 12 𝐽 = 𝐽
1817clsss3 21956 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1910, 16, 18syl2anc 587 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2019, 15sseqtrrd 3942 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 5908 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
2221rneqd 5807 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
235, 22syl5eq 2790 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
24 eqid 2737 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
25 tgptmd 22976 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2625ad2antrr 726 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐺 ∈ TopMnd)
27 simpr 488 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
288, 8, 27cnmptc 22559 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
298cnmptid 22558 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
302, 24, 26, 8, 28, 29cnmpt1plusg 22984 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽 Cn 𝐽))
31 eqid 2737 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
322, 31tgpsubcn 22987 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3332ad2antrr 726 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
348, 30, 28, 33cnmpt12f 22563 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽))
3517cnclsi 22169 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)))
3634, 16, 35syl2anc 587 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)))
37 df-ima 5564 . . . . . . . . . 10 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆)
3813resmptd 5908 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆) = (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
3938rneqd 5807 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆) = ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
4037, 39syl5eq 2790 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) = ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
416, 24, 31nsgconj 18575 . . . . . . . . . . . 12 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑆)
4241ad4ant234 1177 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑆)
4342fmpttd 6932 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):𝑆𝑆)
4443frnd 6553 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ 𝑆)
4540, 44eqsstrd 3939 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) ⊆ 𝑆)
4617clsss 21951 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4710, 16, 45, 46syl3anc 1373 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4836, 47sstrd 3911 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4923, 48eqsstrrd 3940 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))
50 ovex 7246 . . . . . . 7 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ V
51 eqid 2737 . . . . . . 7 (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥))
5250, 51fnmpti 6521 . . . . . 6 (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆)
53 df-f 6384 . . . . . 6 ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) ∧ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)))
5452, 53mpbiran 709 . . . . 5 ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))
5549, 54sylibr 237 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆))
5651fmpt 6927 . . . 4 (∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆))
5755, 56sylibr 237 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))
5857ralrimiva 3105 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))
596, 24, 31isnsg3 18576 . 2 (((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)))
604, 58, 59sylanbrc 586 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866   cuni 4819  cmpt 5135  ran crn 5552  cres 5553  cima 5554   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  TopOpenctopn 16926  -gcsg 18367  SubGrpcsubg 18537  NrmSGrpcnsg 18538  Topctop 21790  TopOnctopon 21807  clsccl 21915   Cn ccn 22121   ×t ctx 22457  TopMndctmd 22967  TopGrpctgp 22968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-topgen 16948  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-nsg 18541  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-cn 22124  df-cnp 22125  df-tx 22459  df-tmd 22969  df-tgp 22970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator