MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsnsg Structured version   Visualization version   GIF version

Theorem clsnsg 24023
Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
clsnsg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺))

Proof of Theorem clsnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 19068 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgntr.h . . . 4 𝐽 = (TopOpen‘𝐺)
32clssubg 24022 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
41, 3sylan2 593 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
5 df-ima 5629 . . . . . . 7 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆))
6 eqid 2731 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
72, 6tgptopon 23995 . . . . . . . . . . . . 13 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
87ad2antrr 726 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
9 topontop 22826 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ Top)
111ad2antlr 727 . . . . . . . . . . . . 13 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
126subgss 19037 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1311, 12syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
14 toponuni 22827 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
158, 14syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (Base‘𝐺) = 𝐽)
1613, 15sseqtrd 3971 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 𝐽)
17 eqid 2731 . . . . . . . . . . . 12 𝐽 = 𝐽
1817clsss3 22972 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1910, 16, 18syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2019, 15sseqtrrd 3972 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 5989 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
2221rneqd 5878 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
235, 22eqtrid 2778 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
24 eqid 2731 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
25 tgptmd 23992 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2625ad2antrr 726 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐺 ∈ TopMnd)
27 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
288, 8, 27cnmptc 23575 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
298cnmptid 23574 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
302, 24, 26, 8, 28, 29cnmpt1plusg 24000 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽 Cn 𝐽))
31 eqid 2731 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
322, 31tgpsubcn 24003 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3332ad2antrr 726 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
348, 30, 28, 33cnmpt12f 23579 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽))
3517cnclsi 23185 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)))
3634, 16, 35syl2anc 584 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)))
37 df-ima 5629 . . . . . . . . . 10 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆)
3813resmptd 5989 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆) = (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
3938rneqd 5878 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ↾ 𝑆) = ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
4037, 39eqtrid 2778 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) = ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)))
416, 24, 31nsgconj 19069 . . . . . . . . . . . 12 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑆)
4241ad4ant234 1176 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ 𝑆)
4342fmpttd 7048 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):𝑆𝑆)
4443frnd 6659 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦𝑆 ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ 𝑆)
4540, 44eqsstrd 3969 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) ⊆ 𝑆)
4617clsss 22967 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4710, 16, 45, 46syl3anc 1373 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4836, 47sstrd 3945 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
4923, 48eqsstrrd 3970 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))
50 ovex 7379 . . . . . . 7 ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ V
51 eqid 2731 . . . . . . 7 (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥))
5250, 51fnmpti 6624 . . . . . 6 (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆)
53 df-f 6485 . . . . . 6 ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) ∧ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)))
5452, 53mpbiran 709 . . . . 5 ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))
5549, 54sylibr 234 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆))
5651fmpt 7043 . . . 4 (∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆))
5755, 56sylibr 234 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))
5857ralrimiva 3124 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))
596, 24, 31isnsg3 19070 . 2 (((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g𝐺)𝑦)(-g𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)))
604, 58, 59sylanbrc 583 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3902   cuni 4859  cmpt 5172  ran crn 5617  cres 5618  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  TopOpenctopn 17322  -gcsg 18845  SubGrpcsubg 19030  NrmSGrpcnsg 19031  Topctop 22806  TopOnctopon 22823  clsccl 22931   Cn ccn 23137   ×t ctx 23473  TopMndctmd 23983  TopGrpctgp 23984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-topgen 17344  df-plusf 18544  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-nsg 19034  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-cn 23140  df-cnp 23141  df-tx 23475  df-tmd 23985  df-tgp 23986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator