| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6333 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
| 2 | elong 6319 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onelon 6336 ordunidif 6361 ordpwsuc 7754 ordsucun 7764 ordunel 7766 ordunisuc2 7784 oesuclem 8450 odi 8504 oelim2 8520 oeoalem 8521 oeoelem 8523 limenpsi 9076 ordtypelem9 9437 oismo 9451 cantnflt 9587 cantnfp1lem3 9595 cantnflem1b 9601 cantnflem1 9604 rankr1bg 9718 rankr1clem 9735 rankr1c 9736 rankonidlem 9743 infxpenlem 9926 coflim 10174 fin23lem26 10238 fpwwe2lem7 10550 onsuct0 36417 ordnexbtwnsuc 43243 orddif0suc 43244 omord2lim 43276 nadd2rabtr 43360 nadd2rabex 43362 nadd1rabtr 43364 nadd1rabex 43366 iunord 49665 |
| Copyright terms: Public domain | W3C validator |