| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6336 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
| 2 | elong 6322 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Ord word 6313 Oncon0 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 |
| This theorem is referenced by: onelon 6339 ordunidif 6364 ordpwsuc 7754 ordsucun 7764 ordunel 7766 ordunisuc2 7783 oesuclem 8449 odi 8503 oelim2 8519 oeoalem 8520 oeoelem 8522 limenpsi 9076 ordtypelem9 9423 oismo 9437 cantnflt 9573 cantnfp1lem3 9581 cantnflem1b 9587 cantnflem1 9590 rankr1bg 9707 rankr1clem 9724 rankr1c 9725 rankonidlem 9732 infxpenlem 9915 coflim 10163 fin23lem26 10227 fpwwe2lem7 10539 onsuct0 36557 ordnexbtwnsuc 43424 orddif0suc 43425 omord2lim 43457 nadd2rabtr 43541 nadd2rabex 43543 nadd1rabtr 43545 nadd1rabex 43547 iunord 49837 |
| Copyright terms: Public domain | W3C validator |