| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6354 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
| 2 | elong 6340 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onelon 6357 ordunidif 6382 ordpwsuc 7790 ordsucun 7800 ordunel 7802 ordunisuc2 7820 oesuclem 8489 odi 8543 oelim2 8559 oeoalem 8560 oeoelem 8562 limenpsi 9116 ordtypelem9 9479 oismo 9493 cantnflt 9625 cantnfp1lem3 9633 cantnflem1b 9639 cantnflem1 9642 rankr1bg 9756 rankr1clem 9773 rankr1c 9774 rankonidlem 9781 infxpenlem 9966 coflim 10214 fin23lem26 10278 fpwwe2lem7 10590 onsuct0 36429 ordnexbtwnsuc 43256 orddif0suc 43257 omord2lim 43289 nadd2rabtr 43373 nadd2rabex 43375 nadd1rabtr 43377 nadd1rabex 43379 iunord 49665 |
| Copyright terms: Public domain | W3C validator |