Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelon | Structured version Visualization version GIF version |
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 6273 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
2 | elong 6259 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
3 | 2 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
4 | 1, 3 | mpbird 256 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: onelon 6276 ordunidif 6299 ordpwsuc 7637 ordsucun 7647 ordunel 7649 ordunisuc2 7666 oesuclem 8317 odi 8372 oelim2 8388 oeoalem 8389 oeoelem 8391 limenpsi 8888 ordtypelem9 9215 oismo 9229 cantnflt 9360 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1 9377 rankr1bg 9492 rankr1clem 9509 rankr1c 9510 rankonidlem 9517 infxpenlem 9700 coflim 9948 fin23lem26 10012 fpwwe2lem7 10324 onsuct0 34557 iunord 46268 |
Copyright terms: Public domain | W3C validator |