| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordelon | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6323 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
| 2 | elong 6309 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Ord word 6300 Oncon0 6301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 |
| This theorem is referenced by: onelon 6326 ordunidif 6351 ordpwsuc 7740 ordsucun 7750 ordunel 7752 ordunisuc2 7769 oesuclem 8435 odi 8489 oelim2 8505 oeoalem 8506 oeoelem 8508 limenpsi 9060 ordtypelem9 9407 oismo 9421 cantnflt 9557 cantnfp1lem3 9565 cantnflem1b 9571 cantnflem1 9574 rankr1bg 9691 rankr1clem 9708 rankr1c 9709 rankonidlem 9716 infxpenlem 9899 coflim 10147 fin23lem26 10211 fpwwe2lem7 10523 onsuct0 36475 ordnexbtwnsuc 43300 orddif0suc 43301 omord2lim 43333 nadd2rabtr 43417 nadd2rabex 43419 nadd1rabtr 43421 nadd1rabex 43423 iunord 49708 |
| Copyright terms: Public domain | W3C validator |