![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelon | Structured version Visualization version GIF version |
Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of [Schloeder] p. 1. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 6417 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
2 | elong 6403 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
3 | 2 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
4 | 1, 3 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: onelon 6420 ordunidif 6444 ordpwsuc 7851 ordsucun 7861 ordunel 7863 ordunisuc2 7881 oesuclem 8581 odi 8635 oelim2 8651 oeoalem 8652 oeoelem 8654 limenpsi 9218 ordtypelem9 9595 oismo 9609 cantnflt 9741 cantnfp1lem3 9749 cantnflem1b 9755 cantnflem1 9758 rankr1bg 9872 rankr1clem 9889 rankr1c 9890 rankonidlem 9897 infxpenlem 10082 coflim 10330 fin23lem26 10394 fpwwe2lem7 10706 onsuct0 36407 ordnexbtwnsuc 43229 orddif0suc 43230 omord2lim 43262 nadd2rabtr 43346 nadd2rabex 43348 nadd1rabtr 43350 nadd1rabex 43352 iunord 48768 |
Copyright terms: Public domain | W3C validator |