MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem1 Structured version   Visualization version   GIF version

Theorem upgrres1lem1 27676
Description: Lemma 1 for upgrres1 27680. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
upgrres1lem1 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem upgrres1lem1
StepHypRef Expression
1 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6788 . . 3 𝑉 ∈ V
32difexi 5252 . 2 (𝑉 ∖ {𝑁}) ∈ V
4 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
65fvexi 6788 . . . 4 𝐸 ∈ V
74, 6rabex2 5258 . . 3 𝐹 ∈ V
8 resiexg 7761 . . 3 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
97, 8ax-mp 5 . 2 ( I ↾ 𝐹) ∈ V
103, 9pm3.2i 471 1 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wnel 3049  {crab 3068  Vcvv 3432  cdif 3884  {csn 4561   I cid 5488  cres 5591  cfv 6433  Vtxcvtx 27366  Edgcedg 27417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601  df-iota 6391  df-fv 6441
This theorem is referenced by:  upgrres1lem2  27678  upgrres1lem3  27679
  Copyright terms: Public domain W3C validator