| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrres1lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for upgrres1 29258. (Contributed by AV, 7-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| Ref | Expression |
|---|---|
| upgrres1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6836 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | difexi 5269 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 4 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 5 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 5 | fvexi 6836 | . . . 4 ⊢ 𝐸 ∈ V |
| 7 | 4, 6 | rabex2 5280 | . . 3 ⊢ 𝐹 ∈ V |
| 8 | resiexg 7845 | . . 3 ⊢ (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝐹) ∈ V |
| 10 | 3, 9 | pm3.2i 470 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3394 Vcvv 3436 ∖ cdif 3900 {csn 4577 I cid 5513 ↾ cres 5621 ‘cfv 6482 Vtxcvtx 28941 Edgcedg 28992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: upgrres1lem2 29256 upgrres1lem3 29257 |
| Copyright terms: Public domain | W3C validator |