Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrres1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for upgrres1 27680. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
upgrres1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6788 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | difexi 5252 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
4 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
5 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 5 | fvexi 6788 | . . . 4 ⊢ 𝐸 ∈ V |
7 | 4, 6 | rabex2 5258 | . . 3 ⊢ 𝐹 ∈ V |
8 | resiexg 7761 | . . 3 ⊢ (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝐹) ∈ V |
10 | 3, 9 | pm3.2i 471 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 {crab 3068 Vcvv 3432 ∖ cdif 3884 {csn 4561 I cid 5488 ↾ cres 5591 ‘cfv 6433 Vtxcvtx 27366 Edgcedg 27417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 df-iota 6391 df-fv 6441 |
This theorem is referenced by: upgrres1lem2 27678 upgrres1lem3 27679 |
Copyright terms: Public domain | W3C validator |