MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem1 Structured version   Visualization version   GIF version

Theorem upgrres1lem1 29341
Description: Lemma 1 for upgrres1 29345. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
upgrres1lem1 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem upgrres1lem1
StepHypRef Expression
1 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6921 . . 3 𝑉 ∈ V
32difexi 5336 . 2 (𝑉 ∖ {𝑁}) ∈ V
4 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
65fvexi 6921 . . . 4 𝐸 ∈ V
74, 6rabex2 5347 . . 3 𝐹 ∈ V
8 resiexg 7935 . . 3 (𝐹 ∈ V → ( I ↾ 𝐹) ∈ V)
97, 8ax-mp 5 . 2 ( I ↾ 𝐹) ∈ V
103, 9pm3.2i 470 1 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  wnel 3044  {crab 3433  Vcvv 3478  cdif 3960  {csn 4631   I cid 5582  cres 5691  cfv 6563  Vtxcvtx 29028  Edgcedg 29079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-res 5701  df-iota 6516  df-fv 6571
This theorem is referenced by:  upgrres1lem2  29343  upgrres1lem3  29344
  Copyright terms: Public domain W3C validator