![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres1lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for upgrres1 28838. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ |
Ref | Expression |
---|---|
upgrres1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.s | . . 3 ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) |
3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
6 | 3, 4, 5 | upgrres1lem1 28834 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
7 | opvtxfv 28532 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = (𝑉 ∖ {𝑁})) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = (𝑉 ∖ {𝑁}) |
9 | 2, 8 | eqtri 2759 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∉ wnel 3045 {crab 3431 Vcvv 3473 ∖ cdif 3945 {csn 4628 ⟨cop 4634 I cid 5573 ↾ cres 5678 ‘cfv 6543 Vtxcvtx 28524 Edgcedg 28575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7979 df-vtx 28526 |
This theorem is referenced by: upgrres1 28838 umgrres1 28839 usgrres1 28840 nbupgrres 28889 nbupgruvtxres 28932 uvtxupgrres 28933 cusgrres 28973 |
Copyright terms: Public domain | W3C validator |