MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem2 Structured version   Visualization version   GIF version

Theorem upgrres1lem2 26426
Description: Lemma 2 for upgrres1 26428. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1lem2 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1lem2
StepHypRef Expression
1 upgrres1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
21fveq2i 6335 . 2 (Vtx‘𝑆) = (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩)
3 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 upgrres1.e . . . 4 𝐸 = (Edg‘𝐺)
5 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
63, 4, 5upgrres1lem1 26424 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
7 opvtxfv 26105 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = (𝑉 ∖ {𝑁}))
86, 7ax-mp 5 . 2 (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = (𝑉 ∖ {𝑁})
92, 8eqtri 2793 1 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145  wnel 3046  {crab 3065  Vcvv 3351  cdif 3720  {csn 4316  cop 4322   I cid 5156  cres 5251  cfv 6031  Vtxcvtx 26095  Edgcedg 26160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-iota 5994  df-fun 6033  df-fv 6039  df-1st 7315  df-vtx 26097
This theorem is referenced by:  upgrres1  26428  umgrres1  26429  usgrres1  26430  nbupgrres  26488  nbupgruvtxres  26537  uvtxupgrres  26538  cusgrres  26579
  Copyright terms: Public domain W3C validator