Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrres1lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for upgrres1 28035. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
upgrres1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6837 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
6 | 3, 4, 5 | upgrres1lem1 28031 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
7 | opvtxfv 27729 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = (𝑉 ∖ {𝑁})) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = (𝑉 ∖ {𝑁}) |
9 | 2, 8 | eqtri 2765 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∉ wnel 3047 {crab 3405 Vcvv 3443 ∖ cdif 3902 {csn 4581 〈cop 4587 I cid 5524 ↾ cres 5629 ‘cfv 6488 Vtxcvtx 27721 Edgcedg 27772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-iota 6440 df-fun 6490 df-fv 6496 df-1st 7908 df-vtx 27723 |
This theorem is referenced by: upgrres1 28035 umgrres1 28036 usgrres1 28037 nbupgrres 28086 nbupgruvtxres 28129 uvtxupgrres 28130 cusgrres 28170 |
Copyright terms: Public domain | W3C validator |