| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrres1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgrres1 29291. (Contributed by AV, 7-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| upgrres1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
| 3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 6 | 3, 4, 5 | upgrres1lem1 29287 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
| 7 | opvtxfv 28982 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = (𝑉 ∖ {𝑁})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = (𝑉 ∖ {𝑁}) |
| 9 | 2, 8 | eqtri 2754 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 Vcvv 3436 ∖ cdif 3894 {csn 4573 〈cop 4579 I cid 5508 ↾ cres 5616 ‘cfv 6481 Vtxcvtx 28974 Edgcedg 29025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-vtx 28976 |
| This theorem is referenced by: upgrres1 29291 umgrres1 29292 usgrres1 29293 nbupgrres 29342 nbupgruvtxres 29385 uvtxupgrres 29386 cusgrres 29427 |
| Copyright terms: Public domain | W3C validator |