| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrres1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgrres1 29258. (Contributed by AV, 7-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| upgrres1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
| 3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 6 | 3, 4, 5 | upgrres1lem1 29254 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
| 7 | opvtxfv 28949 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = (𝑉 ∖ {𝑁})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = (𝑉 ∖ {𝑁}) |
| 9 | 2, 8 | eqtri 2752 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3394 Vcvv 3436 ∖ cdif 3900 {csn 4577 〈cop 4583 I cid 5513 ↾ cres 5621 ‘cfv 6482 Vtxcvtx 28941 Edgcedg 28992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 df-vtx 28943 |
| This theorem is referenced by: upgrres1 29258 umgrres1 29259 usgrres1 29260 nbupgrres 29309 nbupgruvtxres 29352 uvtxupgrres 29353 cusgrres 29394 |
| Copyright terms: Public domain | W3C validator |