MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem2 Structured version   Visualization version   GIF version

Theorem upgrres1lem2 29256
Description: Lemma 2 for upgrres1 29258. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1lem2 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1lem2
StepHypRef Expression
1 upgrres1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
21fveq2i 6825 . 2 (Vtx‘𝑆) = (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩)
3 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 upgrres1.e . . . 4 𝐸 = (Edg‘𝐺)
5 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
63, 4, 5upgrres1lem1 29254 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
7 opvtxfv 28949 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = (𝑉 ∖ {𝑁}))
86, 7ax-mp 5 . 2 (Vtx‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = (𝑉 ∖ {𝑁})
92, 8eqtri 2752 1 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wnel 3029  {crab 3394  Vcvv 3436  cdif 3900  {csn 4577  cop 4583   I cid 5513  cres 5621  cfv 6482  Vtxcvtx 28941  Edgcedg 28992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-1st 7924  df-vtx 28943
This theorem is referenced by:  upgrres1  29258  umgrres1  29259  usgrres1  29260  nbupgrres  29309  nbupgruvtxres  29352  uvtxupgrres  29353  cusgrres  29394
  Copyright terms: Public domain W3C validator