MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem3 Structured version   Visualization version   GIF version

Theorem upgrres1lem3 29223
Description: Lemma 3 for upgrres1 29224. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1lem3 (iEdg‘𝑆) = ( I ↾ 𝐹)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1lem3
StepHypRef Expression
1 upgrres1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
21fveq2i 6875 . 2 (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩)
3 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 upgrres1.e . . . 4 𝐸 = (Edg‘𝐺)
5 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
63, 4, 5upgrres1lem1 29220 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
7 opiedgfv 28918 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = ( I ↾ 𝐹))
86, 7ax-mp 5 . 2 (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = ( I ↾ 𝐹)
92, 8eqtri 2757 1 (iEdg‘𝑆) = ( I ↾ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  wnel 3035  {crab 3413  Vcvv 3457  cdif 3921  {csn 4599  cop 4605   I cid 5544  cres 5653  cfv 6527  Vtxcvtx 28907  iEdgciedg 28908  Edgcedg 28958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-iota 6480  df-fun 6529  df-fv 6535  df-2nd 7983  df-iedg 28910
This theorem is referenced by:  upgrres1  29224  umgrres1  29225  usgrres1  29226  nbupgrres  29275
  Copyright terms: Public domain W3C validator