Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrres1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for upgrres1 27661. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
upgrres1lem3 | ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6771 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
6 | 3, 4, 5 | upgrres1lem1 27657 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
7 | opiedgfv 27358 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹) |
9 | 2, 8 | eqtri 2767 | 1 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 {crab 3069 Vcvv 3430 ∖ cdif 3888 {csn 4566 〈cop 4572 I cid 5487 ↾ cres 5590 ‘cfv 6430 Vtxcvtx 27347 iEdgciedg 27348 Edgcedg 27398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fv 6438 df-2nd 7818 df-iedg 27350 |
This theorem is referenced by: upgrres1 27661 umgrres1 27662 usgrres1 27663 nbupgrres 27712 |
Copyright terms: Public domain | W3C validator |