| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrres1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for upgrres1 29224. (Contributed by AV, 7-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| upgrres1lem3 | ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6875 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
| 3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 6 | 3, 4, 5 | upgrres1lem1 29220 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
| 7 | opiedgfv 28918 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹) |
| 9 | 2, 8 | eqtri 2757 | 1 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∉ wnel 3035 {crab 3413 Vcvv 3457 ∖ cdif 3921 {csn 4599 〈cop 4605 I cid 5544 ↾ cres 5653 ‘cfv 6527 Vtxcvtx 28907 iEdgciedg 28908 Edgcedg 28958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-iota 6480 df-fun 6529 df-fv 6535 df-2nd 7983 df-iedg 28910 |
| This theorem is referenced by: upgrres1 29224 umgrres1 29225 usgrres1 29226 nbupgrres 29275 |
| Copyright terms: Public domain | W3C validator |