![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for upgrres1 29144. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
upgrres1lem3 | ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6903 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
6 | 3, 4, 5 | upgrres1lem1 29140 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
7 | opiedgfv 28838 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹) |
9 | 2, 8 | eqtri 2755 | 1 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∉ wnel 3042 {crab 3428 Vcvv 3471 ∖ cdif 3944 {csn 4630 〈cop 4636 I cid 5577 ↾ cres 5682 ‘cfv 6551 Vtxcvtx 28827 iEdgciedg 28828 Edgcedg 28878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-iota 6503 df-fun 6553 df-fv 6559 df-2nd 7998 df-iedg 28830 |
This theorem is referenced by: upgrres1 29144 umgrres1 29145 usgrres1 29146 nbupgrres 29195 |
Copyright terms: Public domain | W3C validator |