MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem3 Structured version   Visualization version   GIF version

Theorem upgrres1lem3 29296
Description: Lemma 3 for upgrres1 29297. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1lem3 (iEdg‘𝑆) = ( I ↾ 𝐹)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1lem3
StepHypRef Expression
1 upgrres1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
21fveq2i 6884 . 2 (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩)
3 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 upgrres1.e . . . 4 𝐸 = (Edg‘𝐺)
5 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
63, 4, 5upgrres1lem1 29293 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
7 opiedgfv 28991 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = ( I ↾ 𝐹))
86, 7ax-mp 5 . 2 (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = ( I ↾ 𝐹)
92, 8eqtri 2759 1 (iEdg‘𝑆) = ( I ↾ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wnel 3037  {crab 3420  Vcvv 3464  cdif 3928  {csn 4606  cop 4612   I cid 5552  cres 5661  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-2nd 7994  df-iedg 28983
This theorem is referenced by:  upgrres1  29297  umgrres1  29298  usgrres1  29299  nbupgrres  29348
  Copyright terms: Public domain W3C validator