MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1lem3 Structured version   Visualization version   GIF version

Theorem upgrres1lem3 28837
Description: Lemma 3 for upgrres1 28838. (Contributed by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
upgrres1lem3 (iEdg‘𝑆) = ( I ↾ 𝐹)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem upgrres1lem3
StepHypRef Expression
1 upgrres1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
21fveq2i 6894 . 2 (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩)
3 upgrres1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 upgrres1.e . . . 4 𝐸 = (Edg‘𝐺)
5 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
63, 4, 5upgrres1lem1 28834 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V)
7 opiedgfv 28535 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = ( I ↾ 𝐹))
86, 7ax-mp 5 . 2 (iEdg‘⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩) = ( I ↾ 𝐹)
92, 8eqtri 2759 1 (iEdg‘𝑆) = ( I ↾ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2105  wnel 3045  {crab 3431  Vcvv 3473  cdif 3945  {csn 4628  cop 4634   I cid 5573  cres 5678  cfv 6543  Vtxcvtx 28524  iEdgciedg 28525  Edgcedg 28575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-2nd 7980  df-iedg 28527
This theorem is referenced by:  upgrres1  28838  umgrres1  28839  usgrres1  28840  nbupgrres  28889
  Copyright terms: Public domain W3C validator