MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrf Structured version   Visualization version   GIF version

Theorem usgrf 29172
Description: The edge function of a simple graph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
isuspgr.v 𝑉 = (Vtx‘𝐺)
isuspgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrf (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem usgrf
StepHypRef Expression
1 isuspgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isuspgr.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isusgr 29170 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
43ibi 267 1 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  c0 4333  𝒫 cpw 4600  {csn 4626  dom cdm 5685  1-1wf1 6558  cfv 6561  2c2 12321  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  USGraphcusgr 29166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fv 6569  df-usgr 29168
This theorem is referenced by:  usgredg2ALT  29210  usgrf1oedg  29224  usgrsizedg  29232  usgrres  29325
  Copyright terms: Public domain W3C validator