| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrf | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple graph is a one-to-one function into the set of proper unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
| Ref | Expression |
|---|---|
| isuspgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isuspgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrf | ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isuspgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isuspgr.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isusgr 29131 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ∅c0 4280 𝒫 cpw 4547 {csn 4573 dom cdm 5614 –1-1→wf1 6478 ‘cfv 6481 2c2 12180 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 USGraphcusgr 29127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 df-usgr 29129 |
| This theorem is referenced by: usgredg2ALT 29171 usgrf1oedg 29185 usgrsizedg 29193 usgrres 29286 |
| Copyright terms: Public domain | W3C validator |