Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrf | Structured version Visualization version GIF version |
Description: The edge function of a simple graph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
isuspgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuspgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgrf | ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isuspgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isuspgr.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isusgr 27533 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
4 | 3 | ibi 266 | 1 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ∖ cdif 3883 ∅c0 4256 𝒫 cpw 4533 {csn 4561 dom cdm 5584 –1-1→wf1 6423 ‘cfv 6426 2c2 12038 ♯chash 14054 Vtxcvtx 27376 iEdgciedg 27377 USGraphcusgr 27529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5228 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fv 6434 df-usgr 27531 |
This theorem is referenced by: usgredg2ALT 27570 usgrf1oedg 27584 usgrsizedg 27592 usgrres 27685 |
Copyright terms: Public domain | W3C validator |