| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgredg2ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of usgredg2 29171, not using umgredg2 29079. (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 16-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| usgredg2.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgredg2ALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgredg2.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | usgrf 29134 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 4 | f1f 6774 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 6 | 5 | ffvelcdmda 7074 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 7 | fveq2 6876 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝑋) → (♯‘𝑥) = (♯‘(𝐸‘𝑋))) | |
| 8 | 7 | eqeq1d 2737 | . . . 4 ⊢ (𝑥 = (𝐸‘𝑋) → ((♯‘𝑥) = 2 ↔ (♯‘(𝐸‘𝑋)) = 2)) |
| 9 | 8 | elrab 3671 | . . 3 ⊢ ((𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ((𝐸‘𝑋) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘(𝐸‘𝑋)) = 2)) |
| 10 | 9 | simprbi 496 | . 2 ⊢ ((𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (♯‘(𝐸‘𝑋)) = 2) |
| 11 | 6, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 {csn 4601 dom cdm 5654 ⟶wf 6527 –1-1→wf1 6528 ‘cfv 6531 2c2 12295 ♯chash 14348 Vtxcvtx 28975 iEdgciedg 28976 USGraphcusgr 29128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fv 6539 df-usgr 29130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |