MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg2ALT Structured version   Visualization version   GIF version

Theorem usgredg2ALT 29127
Description: Alternate proof of usgredg2 29126, not using umgredg2 29034. (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 16-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
usgredg2.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredg2ALT ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)

Proof of Theorem usgredg2ALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgredg2.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2usgrf 29089 . . . 4 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
4 f1f 6759 . . . 4 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
53, 4syl 17 . . 3 (𝐺 ∈ USGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
65ffvelcdmda 7059 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
7 fveq2 6861 . . . . 5 (𝑥 = (𝐸𝑋) → (♯‘𝑥) = (♯‘(𝐸𝑋)))
87eqeq1d 2732 . . . 4 (𝑥 = (𝐸𝑋) → ((♯‘𝑥) = 2 ↔ (♯‘(𝐸𝑋)) = 2))
98elrab 3662 . . 3 ((𝐸𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ((𝐸𝑋) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘(𝐸𝑋)) = 2))
109simprbi 496 . 2 ((𝐸𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (♯‘(𝐸𝑋)) = 2)
116, 10syl 17 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  cdif 3914  c0 4299  𝒫 cpw 4566  {csn 4592  dom cdm 5641  wf 6510  1-1wf1 6511  cfv 6514  2c2 12248  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  USGraphcusgr 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522  df-usgr 29085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator