MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg2ALT Structured version   Visualization version   GIF version

Theorem usgredg2ALT 28439
Description: Alternate proof of usgredg2 28438, not using umgredg2 28349. (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 16-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
usgredg2.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredg2ALT ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)

Proof of Theorem usgredg2ALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgredg2.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2usgrf 28404 . . . 4 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
4 f1f 6784 . . . 4 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
53, 4syl 17 . . 3 (𝐺 ∈ USGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
65ffvelcdmda 7083 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
7 fveq2 6888 . . . . 5 (𝑥 = (𝐸𝑋) → (♯‘𝑥) = (♯‘(𝐸𝑋)))
87eqeq1d 2734 . . . 4 (𝑥 = (𝐸𝑋) → ((♯‘𝑥) = 2 ↔ (♯‘(𝐸𝑋)) = 2))
98elrab 3682 . . 3 ((𝐸𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ((𝐸𝑋) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘(𝐸𝑋)) = 2))
109simprbi 497 . 2 ((𝐸𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (♯‘(𝐸𝑋)) = 2)
116, 10syl 17 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  cdif 3944  c0 4321  𝒫 cpw 4601  {csn 4627  dom cdm 5675  wf 6536  1-1wf1 6537  cfv 6540  2c2 12263  chash 14286  Vtxcvtx 28245  iEdgciedg 28246  USGraphcusgr 28398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fv 6548  df-usgr 28400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator