Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgredg2ALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgredg2 27462, not using umgredg2 27373. (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 16-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgredg2.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgredg2ALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | usgredg2.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | usgrf 27428 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
4 | f1f 6654 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
6 | 5 | ffvelrnda 6943 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
7 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝑋) → (♯‘𝑥) = (♯‘(𝐸‘𝑋))) | |
8 | 7 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = (𝐸‘𝑋) → ((♯‘𝑥) = 2 ↔ (♯‘(𝐸‘𝑋)) = 2)) |
9 | 8 | elrab 3617 | . . 3 ⊢ ((𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ((𝐸‘𝑋) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘(𝐸‘𝑋)) = 2)) |
10 | 9 | simprbi 496 | . 2 ⊢ ((𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (♯‘(𝐸‘𝑋)) = 2) |
11 | 6, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 dom cdm 5580 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 2c2 11958 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 USGraphcusgr 27422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fv 6426 df-usgr 27424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |