![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredg2ALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgredg2 28438, not using umgredg2 28349. (Contributed by Alexander van der Vekens, 11-Aug-2017.) (Revised by AV, 16-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgredg2.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgredg2ALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | usgredg2.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | usgrf 28404 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
4 | f1f 6784 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
6 | 5 | ffvelcdmda 7083 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
7 | fveq2 6888 | . . . . 5 ⊢ (𝑥 = (𝐸‘𝑋) → (♯‘𝑥) = (♯‘(𝐸‘𝑋))) | |
8 | 7 | eqeq1d 2734 | . . . 4 ⊢ (𝑥 = (𝐸‘𝑋) → ((♯‘𝑥) = 2 ↔ (♯‘(𝐸‘𝑋)) = 2)) |
9 | 8 | elrab 3682 | . . 3 ⊢ ((𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ((𝐸‘𝑋) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘(𝐸‘𝑋)) = 2)) |
10 | 9 | simprbi 497 | . 2 ⊢ ((𝐸‘𝑋) ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (♯‘(𝐸‘𝑋)) = 2) |
11 | 6, 10 | syl 17 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 dom cdm 5675 ⟶wf 6536 –1-1→wf1 6537 ‘cfv 6540 2c2 12263 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 USGraphcusgr 28398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fv 6548 df-usgr 28400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |