Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrf1oedg | Structured version Visualization version GIF version |
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgrf1oedg | ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | usgrf1oedg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | usgrf 27525 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
4 | f1f1orn 6727 | . . 3 ⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
6 | usgrf1oedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | edgval 27419 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
9 | 2 | eqcomi 2747 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐼 |
10 | 9 | rneqi 5846 | . . . . 5 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
11 | 8, 10 | eqtrdi 2794 | . . . 4 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
12 | 6, 11 | eqtrid 2790 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸 = ran 𝐼) |
13 | 12 | f1oeq3d 6713 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→ran 𝐼)) |
14 | 5, 13 | mpbird 256 | 1 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ∖ cdif 3884 ∅c0 4256 𝒫 cpw 4533 {csn 4561 dom cdm 5589 ran crn 5590 –1-1→wf1 6430 –1-1-onto→wf1o 6432 ‘cfv 6433 2c2 12028 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 USGraphcusgr 27519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-edg 27418 df-usgr 27521 |
This theorem is referenced by: usgr2trlncl 28128 |
Copyright terms: Public domain | W3C validator |