| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrf1oedg | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrf1oedg | ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgrf1oedg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | usgrf 29135 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 4 | f1f1orn 6793 | . . 3 ⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 6 | usgrf1oedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 7 | edgval 29029 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 9 | 2 | eqcomi 2738 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐼 |
| 10 | 9 | rneqi 5890 | . . . . 5 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 11 | 8, 10 | eqtrdi 2780 | . . . 4 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
| 12 | 6, 11 | eqtrid 2776 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸 = ran 𝐼) |
| 13 | 12 | f1oeq3d 6779 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→ran 𝐼)) |
| 14 | 5, 13 | mpbird 257 | 1 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 {csn 4585 dom cdm 5631 ran crn 5632 –1-1→wf1 6496 –1-1-onto→wf1o 6498 ‘cfv 6499 2c2 12217 ♯chash 14271 Vtxcvtx 28976 iEdgciedg 28977 Edgcedg 29027 USGraphcusgr 29129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-edg 29028 df-usgr 29131 |
| This theorem is referenced by: usgr2trlncl 29740 |
| Copyright terms: Public domain | W3C validator |