| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrf1oedg | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrf1oedg | ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgrf1oedg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | usgrf 29133 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 4 | f1f1orn 6774 | . . 3 ⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 6 | usgrf1oedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 7 | edgval 29027 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 9 | 2 | eqcomi 2740 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐼 |
| 10 | 9 | rneqi 5876 | . . . . 5 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 11 | 8, 10 | eqtrdi 2782 | . . . 4 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
| 12 | 6, 11 | eqtrid 2778 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸 = ran 𝐼) |
| 13 | 12 | f1oeq3d 6760 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→ran 𝐼)) |
| 14 | 5, 13 | mpbird 257 | 1 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ∅c0 4280 𝒫 cpw 4547 {csn 4573 dom cdm 5614 ran crn 5615 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 2c2 12180 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 Edgcedg 29025 USGraphcusgr 29127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-edg 29026 df-usgr 29129 |
| This theorem is referenced by: usgr2trlncl 29738 |
| Copyright terms: Public domain | W3C validator |