![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrf1oedg | Structured version Visualization version GIF version |
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgrf1oedg.i | β’ πΌ = (iEdgβπΊ) |
usgrf1oedg.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
usgrf1oedg | β’ (πΊ β USGraph β πΌ:dom πΌβ1-1-ontoβπΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 β’ (VtxβπΊ) = (VtxβπΊ) | |
2 | usgrf1oedg.i | . . . 4 β’ πΌ = (iEdgβπΊ) | |
3 | 1, 2 | usgrf 29010 | . . 3 β’ (πΊ β USGraph β πΌ:dom πΌβ1-1β{π₯ β (π« (VtxβπΊ) β {β }) β£ (β―βπ₯) = 2}) |
4 | f1f1orn 6844 | . . 3 β’ (πΌ:dom πΌβ1-1β{π₯ β (π« (VtxβπΊ) β {β }) β£ (β―βπ₯) = 2} β πΌ:dom πΌβ1-1-ontoβran πΌ) | |
5 | 3, 4 | syl 17 | . 2 β’ (πΊ β USGraph β πΌ:dom πΌβ1-1-ontoβran πΌ) |
6 | usgrf1oedg.e | . . . 4 β’ πΈ = (EdgβπΊ) | |
7 | edgval 28904 | . . . . . 6 β’ (EdgβπΊ) = ran (iEdgβπΊ) | |
8 | 7 | a1i 11 | . . . . 5 β’ (πΊ β USGraph β (EdgβπΊ) = ran (iEdgβπΊ)) |
9 | 2 | eqcomi 2734 | . . . . . 6 β’ (iEdgβπΊ) = πΌ |
10 | 9 | rneqi 5933 | . . . . 5 β’ ran (iEdgβπΊ) = ran πΌ |
11 | 8, 10 | eqtrdi 2781 | . . . 4 β’ (πΊ β USGraph β (EdgβπΊ) = ran πΌ) |
12 | 6, 11 | eqtrid 2777 | . . 3 β’ (πΊ β USGraph β πΈ = ran πΌ) |
13 | 12 | f1oeq3d 6830 | . 2 β’ (πΊ β USGraph β (πΌ:dom πΌβ1-1-ontoβπΈ β πΌ:dom πΌβ1-1-ontoβran πΌ)) |
14 | 5, 13 | mpbird 256 | 1 β’ (πΊ β USGraph β πΌ:dom πΌβ1-1-ontoβπΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3419 β cdif 3937 β c0 4318 π« cpw 4598 {csn 4624 dom cdm 5672 ran crn 5673 β1-1βwf1 6539 β1-1-ontoβwf1o 6541 βcfv 6542 2c2 12295 β―chash 14319 Vtxcvtx 28851 iEdgciedg 28852 Edgcedg 28902 USGraphcusgr 29004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-edg 28903 df-usgr 29006 |
This theorem is referenced by: usgr2trlncl 29616 |
Copyright terms: Public domain | W3C validator |