| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrf1oedg | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrf1oedg | ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgrf1oedg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | usgrf 29134 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 4 | f1f1orn 6829 | . . 3 ⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 6 | usgrf1oedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 7 | edgval 29028 | . . . . . 6 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 9 | 2 | eqcomi 2744 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐼 |
| 10 | 9 | rneqi 5917 | . . . . 5 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 11 | 8, 10 | eqtrdi 2786 | . . . 4 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
| 12 | 6, 11 | eqtrid 2782 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸 = ran 𝐼) |
| 13 | 12 | f1oeq3d 6815 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→ran 𝐼)) |
| 14 | 5, 13 | mpbird 257 | 1 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 {csn 4601 dom cdm 5654 ran crn 5655 –1-1→wf1 6528 –1-1-onto→wf1o 6530 ‘cfv 6531 2c2 12295 ♯chash 14348 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 USGraphcusgr 29128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-edg 29027 df-usgr 29130 |
| This theorem is referenced by: usgr2trlncl 29742 |
| Copyright terms: Public domain | W3C validator |