MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrf1oedg Structured version   Visualization version   GIF version

Theorem usgrf1oedg 28453
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdgβ€˜πΊ)
usgrf1oedg.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
usgrf1oedg (𝐺 ∈ USGraph β†’ 𝐼:dom 𝐼–1-1-onto→𝐸)

Proof of Theorem usgrf1oedg
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 usgrf1oedg.i . . . 4 𝐼 = (iEdgβ€˜πΊ)
31, 2usgrf 28404 . . 3 (𝐺 ∈ USGraph β†’ 𝐼:dom 𝐼–1-1β†’{π‘₯ ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) = 2})
4 f1f1orn 6841 . . 3 (𝐼:dom 𝐼–1-1β†’{π‘₯ ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) = 2} β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
53, 4syl 17 . 2 (𝐺 ∈ USGraph β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
6 usgrf1oedg.e . . . 4 𝐸 = (Edgβ€˜πΊ)
7 edgval 28298 . . . . . 6 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
87a1i 11 . . . . 5 (𝐺 ∈ USGraph β†’ (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ))
92eqcomi 2741 . . . . . 6 (iEdgβ€˜πΊ) = 𝐼
109rneqi 5934 . . . . 5 ran (iEdgβ€˜πΊ) = ran 𝐼
118, 10eqtrdi 2788 . . . 4 (𝐺 ∈ USGraph β†’ (Edgβ€˜πΊ) = ran 𝐼)
126, 11eqtrid 2784 . . 3 (𝐺 ∈ USGraph β†’ 𝐸 = ran 𝐼)
1312f1oeq3d 6827 . 2 (𝐺 ∈ USGraph β†’ (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼))
145, 13mpbird 256 1 (𝐺 ∈ USGraph β†’ 𝐼:dom 𝐼–1-1-onto→𝐸)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432   βˆ– cdif 3944  βˆ…c0 4321  π’« cpw 4601  {csn 4627  dom cdm 5675  ran crn 5676  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  2c2 12263  β™―chash 14286  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  USGraphcusgr 28398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-edg 28297  df-usgr 28400
This theorem is referenced by:  usgr2trlncl  29006
  Copyright terms: Public domain W3C validator