MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrf1oedg Structured version   Visualization version   GIF version

Theorem usgrf1oedg 28897
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgrf1oedg (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto𝐸)

Proof of Theorem usgrf1oedg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgrf1oedg.i . . . 4 𝐼 = (iEdg‘𝐺)
31, 2usgrf 28848 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
4 f1f1orn 6844 . . 3 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
53, 4syl 17 . 2 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
6 usgrf1oedg.e . . . 4 𝐸 = (Edg‘𝐺)
7 edgval 28742 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
87a1i 11 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
92eqcomi 2740 . . . . . 6 (iEdg‘𝐺) = 𝐼
109rneqi 5936 . . . . 5 ran (iEdg‘𝐺) = ran 𝐼
118, 10eqtrdi 2787 . . . 4 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
126, 11eqtrid 2783 . . 3 (𝐺 ∈ USGraph → 𝐸 = ran 𝐼)
1312f1oeq3d 6830 . 2 (𝐺 ∈ USGraph → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→ran 𝐼))
145, 13mpbird 257 1 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {crab 3431  cdif 3945  c0 4322  𝒫 cpw 4602  {csn 4628  dom cdm 5676  ran crn 5677  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543  2c2 12274  chash 14297  Vtxcvtx 28689  iEdgciedg 28690  Edgcedg 28740  USGraphcusgr 28842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-edg 28741  df-usgr 28844
This theorem is referenced by:  usgr2trlncl  29450
  Copyright terms: Public domain W3C validator