MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrf1oedg Structured version   Visualization version   GIF version

Theorem usgrf1oedg 29242
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgrf1oedg (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto𝐸)

Proof of Theorem usgrf1oedg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgrf1oedg.i . . . 4 𝐼 = (iEdg‘𝐺)
31, 2usgrf 29190 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
4 f1f1orn 6873 . . 3 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
53, 4syl 17 . 2 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
6 usgrf1oedg.e . . . 4 𝐸 = (Edg‘𝐺)
7 edgval 29084 . . . . . 6 (Edg‘𝐺) = ran (iEdg‘𝐺)
87a1i 11 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
92eqcomi 2749 . . . . . 6 (iEdg‘𝐺) = 𝐼
109rneqi 5962 . . . . 5 ran (iEdg‘𝐺) = ran 𝐼
118, 10eqtrdi 2796 . . . 4 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
126, 11eqtrid 2792 . . 3 (𝐺 ∈ USGraph → 𝐸 = ran 𝐼)
1312f1oeq3d 6859 . 2 (𝐺 ∈ USGraph → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→ran 𝐼))
145, 13mpbird 257 1 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700  ran crn 5701  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  USGraphcusgr 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-edg 29083  df-usgr 29186
This theorem is referenced by:  usgr2trlncl  29796
  Copyright terms: Public domain W3C validator