![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrf | Structured version Visualization version GIF version |
Description: The edge function of a simple pseudograph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
isuspgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuspgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uspgrf | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isuspgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isuspgr.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isuspgr 29080 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
4 | 3 | ibi 266 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3418 ∖ cdif 3943 ∅c0 4324 𝒫 cpw 4606 {csn 4632 class class class wbr 5152 dom cdm 5681 –1-1→wf1 6550 ‘cfv 6553 ≤ cle 11295 2c2 12314 ♯chash 14342 Vtxcvtx 28924 iEdgciedg 28925 USPGraphcuspgr 29076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-rab 3419 df-v 3463 df-sbc 3776 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fv 6561 df-uspgr 29078 |
This theorem is referenced by: uspgrf1oedg 29101 usgrumgruspgr 29110 usgruspgrb 29111 usgrislfuspgr 29115 uspgrn2crct 29734 |
Copyright terms: Public domain | W3C validator |