| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrf | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple pseudograph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.) |
| Ref | Expression |
|---|---|
| isuspgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isuspgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgrf | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isuspgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isuspgr.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuspgr 29079 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 dom cdm 5638 –1-1→wf1 6508 ‘cfv 6511 ≤ cle 11209 2c2 12241 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 USPGraphcuspgr 29075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 df-uspgr 29077 |
| This theorem is referenced by: uspgrf1oedg 29100 usgrumgruspgr 29109 usgruspgrb 29110 usgrislfuspgr 29114 uspgrn2crct 29738 |
| Copyright terms: Public domain | W3C validator |