MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrf Structured version   Visualization version   GIF version

Theorem uspgrf 28847
Description: The edge function of a simple pseudograph is a one-to-one function into unordered pairs of vertices. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
isuspgr.v 𝑉 = (Vtx‘𝐺)
isuspgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgrf (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem uspgrf
StepHypRef Expression
1 isuspgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isuspgr.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isuspgr 28845 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
43ibi 267 1 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {crab 3431  cdif 3945  c0 4322  𝒫 cpw 4602  {csn 4628   class class class wbr 5148  dom cdm 5676  1-1wf1 6540  cfv 6543  cle 11256  2c2 12274  chash 14297  Vtxcvtx 28689  iEdgciedg 28690  USPGraphcuspgr 28841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fv 6551  df-uspgr 28843
This theorem is referenced by:  uspgrf1oedg  28866  usgrumgruspgr  28873  usgruspgrb  28874  usgrislfuspgr  28877  uspgrn2crct  29495
  Copyright terms: Public domain W3C validator