Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgrf1oedg | Structured version Visualization version GIF version |
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
usgrf1o.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uspgrf1oedg | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | usgrf1o.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uspgrf 27427 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | f1f1orn 6711 | . . 3 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) | |
5 | 2 | rneqi 5835 | . . . . 5 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
6 | edgval 27322 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
7 | 5, 6 | eqtr4i 2769 | . . . 4 ⊢ ran 𝐸 = (Edg‘𝐺) |
8 | f1oeq3 6690 | . . . 4 ⊢ (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
10 | 4, 9 | sylib 217 | . 2 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
11 | 3, 10 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 dom cdm 5580 ran crn 5581 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 ≤ cle 10941 2c2 11958 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 USPGraphcuspgr 27421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-edg 27321 df-uspgr 27423 |
This theorem is referenced by: uspgr2wlkeq 27915 wlkiswwlks2lem4 28138 wlkiswwlks2lem5 28139 clwlkclwwlk 28267 |
Copyright terms: Public domain | W3C validator |