![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrf1oedg | Structured version Visualization version GIF version |
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
usgrf1o.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uspgrf1oedg | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | usgrf1o.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uspgrf 29189 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | f1f1orn 6873 | . . 3 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) | |
5 | 2 | rneqi 5962 | . . . . 5 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
6 | edgval 29084 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
7 | 5, 6 | eqtr4i 2771 | . . . 4 ⊢ ran 𝐸 = (Edg‘𝐺) |
8 | f1oeq3 6852 | . . . 4 ⊢ (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
10 | 4, 9 | sylib 218 | . 2 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
11 | 3, 10 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 dom cdm 5700 ran crn 5701 –1-1→wf1 6570 –1-1-onto→wf1o 6572 ‘cfv 6573 ≤ cle 11325 2c2 12348 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 USPGraphcuspgr 29183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-edg 29083 df-uspgr 29185 |
This theorem is referenced by: uspgredgiedg 29210 uspgriedgedg 29211 uspgr2wlkeq 29682 wlkiswwlks2lem4 29905 wlkiswwlks2lem5 29906 clwlkclwwlk 30034 isuspgrim0lem 47755 uspgrlimlem1 47812 uspgrlimlem2 47813 uspgrlimlem3 47814 uspgrlimlem4 47815 uspgrlim 47816 |
Copyright terms: Public domain | W3C validator |