MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrf1oedg Structured version   Visualization version   GIF version

Theorem uspgrf1oedg 28422
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Hypothesis
Ref Expression
usgrf1o.e 𝐸 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
uspgrf1oedg (𝐺 ∈ USPGraph β†’ 𝐸:dom 𝐸–1-1-ontoβ†’(Edgβ€˜πΊ))

Proof of Theorem uspgrf1oedg
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 usgrf1o.e . . 3 𝐸 = (iEdgβ€˜πΊ)
31, 2uspgrf 28403 . 2 (𝐺 ∈ USPGraph β†’ 𝐸:dom 𝐸–1-1β†’{π‘₯ ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
4 f1f1orn 6841 . . 3 (𝐸:dom 𝐸–1-1β†’{π‘₯ ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2} β†’ 𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸)
52rneqi 5934 . . . . 5 ran 𝐸 = ran (iEdgβ€˜πΊ)
6 edgval 28298 . . . . 5 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
75, 6eqtr4i 2763 . . . 4 ran 𝐸 = (Edgβ€˜πΊ)
8 f1oeq3 6820 . . . 4 (ran 𝐸 = (Edgβ€˜πΊ) β†’ (𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-ontoβ†’(Edgβ€˜πΊ)))
97, 8ax-mp 5 . . 3 (𝐸:dom 𝐸–1-1-ontoβ†’ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-ontoβ†’(Edgβ€˜πΊ))
104, 9sylib 217 . 2 (𝐸:dom 𝐸–1-1β†’{π‘₯ ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2} β†’ 𝐸:dom 𝐸–1-1-ontoβ†’(Edgβ€˜πΊ))
113, 10syl 17 1 (𝐺 ∈ USPGraph β†’ 𝐸:dom 𝐸–1-1-ontoβ†’(Edgβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106  {crab 3432   βˆ– cdif 3944  βˆ…c0 4321  π’« cpw 4601  {csn 4627   class class class wbr 5147  dom cdm 5675  ran crn 5676  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540   ≀ cle 11245  2c2 12263  β™―chash 14286  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  USPGraphcuspgr 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-edg 28297  df-uspgr 28399
This theorem is referenced by:  uspgr2wlkeq  28892  wlkiswwlks2lem4  29115  wlkiswwlks2lem5  29116  clwlkclwwlk  29244
  Copyright terms: Public domain W3C validator