| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrf1oedg | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrf1o.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgrf1oedg | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgrf1o.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uspgrf 29081 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 4 | f1f1orn 6811 | . . 3 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) | |
| 5 | 2 | rneqi 5901 | . . . . 5 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 6 | edgval 28976 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 7 | 5, 6 | eqtr4i 2755 | . . . 4 ⊢ ran 𝐸 = (Edg‘𝐺) |
| 8 | f1oeq3 6790 | . . . 4 ⊢ (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 10 | 4, 9 | sylib 218 | . 2 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 11 | 3, 10 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 dom cdm 5638 ran crn 5639 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 ≤ cle 11209 2c2 12241 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 USPGraphcuspgr 29075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-edg 28975 df-uspgr 29077 |
| This theorem is referenced by: uspgredgiedg 29102 uspgriedgedg 29103 uspgr2wlkeq 29574 wlkiswwlks2lem4 29802 wlkiswwlks2lem5 29803 clwlkclwwlk 29931 isuspgrim0lem 47893 upgrimwlklem2 47898 upgrimwlklem3 47899 upgrimtrlslem2 47905 upgrimtrls 47906 uspgrlimlem1 47987 uspgrlimlem2 47988 uspgrlimlem3 47989 uspgrlimlem4 47990 uspgrlim 47991 |
| Copyright terms: Public domain | W3C validator |