| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrf1oedg | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrf1o.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgrf1oedg | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgrf1o.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uspgrf 29057 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 4 | f1f1orn 6793 | . . 3 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) | |
| 5 | 2 | rneqi 5890 | . . . . 5 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 6 | edgval 28952 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 7 | 5, 6 | eqtr4i 2755 | . . . 4 ⊢ ran 𝐸 = (Edg‘𝐺) |
| 8 | f1oeq3 6772 | . . . 4 ⊢ (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 10 | 4, 9 | sylib 218 | . 2 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 11 | 3, 10 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 {csn 4585 class class class wbr 5102 dom cdm 5631 ran crn 5632 –1-1→wf1 6496 –1-1-onto→wf1o 6498 ‘cfv 6499 ≤ cle 11185 2c2 12217 ♯chash 14271 Vtxcvtx 28899 iEdgciedg 28900 Edgcedg 28950 USPGraphcuspgr 29051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-edg 28951 df-uspgr 29053 |
| This theorem is referenced by: uspgredgiedg 29078 uspgriedgedg 29079 uspgr2wlkeq 29549 wlkiswwlks2lem4 29775 wlkiswwlks2lem5 29776 clwlkclwwlk 29904 isuspgrim0lem 47866 upgrimwlklem2 47871 upgrimwlklem3 47872 upgrimtrlslem2 47878 upgrimtrls 47879 uspgrlimlem1 47960 uspgrlimlem2 47961 uspgrlimlem3 47962 uspgrlimlem4 47963 uspgrlim 47964 |
| Copyright terms: Public domain | W3C validator |