| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrf1oedg | Structured version Visualization version GIF version | ||
| Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrf1o.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uspgrf1oedg | ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | usgrf1o.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uspgrf 29088 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 4 | f1f1orn 6814 | . . 3 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→ran 𝐸) | |
| 5 | 2 | rneqi 5904 | . . . . 5 ⊢ ran 𝐸 = ran (iEdg‘𝐺) |
| 6 | edgval 28983 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 7 | 5, 6 | eqtr4i 2756 | . . . 4 ⊢ ran 𝐸 = (Edg‘𝐺) |
| 8 | f1oeq3 6793 | . . . 4 ⊢ (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→ran 𝐸 ↔ 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 10 | 4, 9 | sylib 218 | . 2 ⊢ (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| 11 | 3, 10 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 dom cdm 5641 ran crn 5642 –1-1→wf1 6511 –1-1-onto→wf1o 6513 ‘cfv 6514 ≤ cle 11216 2c2 12248 ♯chash 14302 Vtxcvtx 28930 iEdgciedg 28931 Edgcedg 28981 USPGraphcuspgr 29082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-edg 28982 df-uspgr 29084 |
| This theorem is referenced by: uspgredgiedg 29109 uspgriedgedg 29110 uspgr2wlkeq 29581 wlkiswwlks2lem4 29809 wlkiswwlks2lem5 29810 clwlkclwwlk 29938 isuspgrim0lem 47897 upgrimwlklem2 47902 upgrimwlklem3 47903 upgrimtrlslem2 47909 upgrimtrls 47910 uspgrlimlem1 47991 uspgrlimlem2 47992 uspgrlimlem3 47993 uspgrlimlem4 47994 uspgrlim 47995 |
| Copyright terms: Public domain | W3C validator |