MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrf1oedg Structured version   Visualization version   GIF version

Theorem uspgrf1oedg 29118
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Hypothesis
Ref Expression
usgrf1o.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgrf1oedg (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))

Proof of Theorem uspgrf1oedg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgrf1o.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2uspgrf 29099 . 2 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4 f1f1orn 6775 . . 3 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
52rneqi 5879 . . . . 5 ran 𝐸 = ran (iEdg‘𝐺)
6 edgval 28994 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
75, 6eqtr4i 2755 . . . 4 ran 𝐸 = (Edg‘𝐺)
8 f1oeq3 6754 . . . 4 (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
97, 8ax-mp 5 . . 3 (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
104, 9sylib 218 . 2 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
113, 10syl 17 1 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3394  cdif 3900  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5092  dom cdm 5619  ran crn 5620  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  cle 11150  2c2 12183  chash 14237  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992  USPGraphcuspgr 29093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-edg 28993  df-uspgr 29095
This theorem is referenced by:  uspgredgiedg  29120  uspgriedgedg  29121  uspgr2wlkeq  29591  wlkiswwlks2lem4  29817  wlkiswwlks2lem5  29818  clwlkclwwlk  29946  isuspgrim0lem  47881  upgrimwlklem2  47886  upgrimwlklem3  47887  upgrimtrlslem2  47893  upgrimtrls  47894  uspgrlimlem1  47976  uspgrlimlem2  47977  uspgrlimlem3  47978  uspgrlimlem4  47979  uspgrlim  47980
  Copyright terms: Public domain W3C validator