![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrf1oedg | Structured version Visualization version GIF version |
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
usgrf1o.e | β’ πΈ = (iEdgβπΊ) |
Ref | Expression |
---|---|
uspgrf1oedg | β’ (πΊ β USPGraph β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (VtxβπΊ) = (VtxβπΊ) | |
2 | usgrf1o.e | . . 3 β’ πΈ = (iEdgβπΊ) | |
3 | 1, 2 | uspgrf 28403 | . 2 β’ (πΊ β USPGraph β πΈ:dom πΈβ1-1β{π₯ β (π« (VtxβπΊ) β {β }) β£ (β―βπ₯) β€ 2}) |
4 | f1f1orn 6841 | . . 3 β’ (πΈ:dom πΈβ1-1β{π₯ β (π« (VtxβπΊ) β {β }) β£ (β―βπ₯) β€ 2} β πΈ:dom πΈβ1-1-ontoβran πΈ) | |
5 | 2 | rneqi 5934 | . . . . 5 β’ ran πΈ = ran (iEdgβπΊ) |
6 | edgval 28298 | . . . . 5 β’ (EdgβπΊ) = ran (iEdgβπΊ) | |
7 | 5, 6 | eqtr4i 2763 | . . . 4 β’ ran πΈ = (EdgβπΊ) |
8 | f1oeq3 6820 | . . . 4 β’ (ran πΈ = (EdgβπΊ) β (πΈ:dom πΈβ1-1-ontoβran πΈ β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ))) | |
9 | 7, 8 | ax-mp 5 | . . 3 β’ (πΈ:dom πΈβ1-1-ontoβran πΈ β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ)) |
10 | 4, 9 | sylib 217 | . 2 β’ (πΈ:dom πΈβ1-1β{π₯ β (π« (VtxβπΊ) β {β }) β£ (β―βπ₯) β€ 2} β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ)) |
11 | 3, 10 | syl 17 | 1 β’ (πΊ β USPGraph β πΈ:dom πΈβ1-1-ontoβ(EdgβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 {crab 3432 β cdif 3944 β c0 4321 π« cpw 4601 {csn 4627 class class class wbr 5147 dom cdm 5675 ran crn 5676 β1-1βwf1 6537 β1-1-ontoβwf1o 6539 βcfv 6540 β€ cle 11245 2c2 12263 β―chash 14286 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 USPGraphcuspgr 28397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-edg 28297 df-uspgr 28399 |
This theorem is referenced by: uspgr2wlkeq 28892 wlkiswwlks2lem4 29115 wlkiswwlks2lem5 29116 clwlkclwwlk 29244 |
Copyright terms: Public domain | W3C validator |