MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem3a Structured version   Visualization version   GIF version

Theorem wfrlem3a 8057
Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. (Contributed by Scott Fenton, 31-Jul-2020.)
Hypotheses
Ref Expression
wfrlem1.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
wfrlem3a.2 𝐺 ∈ V
Assertion
Ref Expression
wfrlem3a (𝐺𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
Distinct variable groups:   𝐴,𝑓,𝑤,𝑥,𝑦,𝑧   𝑓,𝐹,𝑤,𝑥,𝑦,𝑧   𝑅,𝑓,𝑤,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem wfrlem3a
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 wfrlem3a.2 . 2 𝐺 ∈ V
2 fneq1 6470 . . . 4 (𝑔 = 𝐺 → (𝑔 Fn 𝑧𝐺 Fn 𝑧))
3 fveq1 6716 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑤) = (𝐺𝑤))
4 reseq1 5845 . . . . . . 7 (𝑔 = 𝐺 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))
54fveq2d 6721 . . . . . 6 (𝑔 = 𝐺 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))
63, 5eqeq12d 2753 . . . . 5 (𝑔 = 𝐺 → ((𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
76ralbidv 3118 . . . 4 (𝑔 = 𝐺 → (∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
82, 73anbi13d 1440 . . 3 (𝑔 = 𝐺 → ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))))
98exbidv 1929 . 2 (𝑔 = 𝐺 → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))))
10 wfrlem1.1 . . 3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1110wfrlem1 8054 . 2 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
121, 9, 11elab2 3591 1 (𝐺𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wral 3061  Vcvv 3408  wss 3866  cres 5553  Predcpred 6159   Fn wfn 6375  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-iota 6338  df-fun 6382  df-fn 6383  df-fv 6388
This theorem is referenced by:  wfrlem17  8071
  Copyright terms: Public domain W3C validator