Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfrlem3a | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. (Contributed by Scott Fenton, 31-Jul-2020.) |
Ref | Expression |
---|---|
wfrlem1.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
wfrlem3a.2 | ⊢ 𝐺 ∈ V |
Ref | Expression |
---|---|
wfrlem3a | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem3a.2 | . 2 ⊢ 𝐺 ∈ V | |
2 | fneq1 6470 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 Fn 𝑧 ↔ 𝐺 Fn 𝑧)) | |
3 | fveq1 6716 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑤) = (𝐺‘𝑤)) | |
4 | reseq1 5845 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))) | |
5 | 4 | fveq2d 6721 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
6 | 3, 5 | eqeq12d 2753 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
7 | 6 | ralbidv 3118 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
8 | 2, 7 | 3anbi13d 1440 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
9 | 8 | exbidv 1929 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
10 | wfrlem1.1 | . . 3 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
11 | 10 | wfrlem1 8054 | . 2 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
12 | 1, 9, 11 | elab2 3591 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∃wex 1787 ∈ wcel 2110 {cab 2714 ∀wral 3061 Vcvv 3408 ⊆ wss 3866 ↾ cres 5553 Predcpred 6159 Fn wfn 6375 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-iota 6338 df-fun 6382 df-fn 6383 df-fv 6388 |
This theorem is referenced by: wfrlem17 8071 |
Copyright terms: Public domain | W3C validator |