MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem1 Structured version   Visualization version   GIF version

Theorem wfrlem1 7948
Description: Lemma for well-founded recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem1.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
wfrlem1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Distinct variable groups:   𝐴,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧   𝑓,𝐹,𝑔,𝑤,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔)

Proof of Theorem wfrlem1
StepHypRef Expression
1 wfrlem1.1 . 2 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 fneq1 6438 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
3 fveq1 6663 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4 reseq1 5841 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))
54fveq2d 6668 . . . . . . . 8 (𝑓 = 𝑔 → (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))
63, 5eqeq12d 2837 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
76ralbidv 3197 . . . . . 6 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
82, 73anbi13d 1434 . . . . 5 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
98exbidv 1918 . . . 4 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
10 fneq2 6439 . . . . . 6 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
11 sseq1 3991 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
12 sseq2 3992 . . . . . . . . 9 (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
1312raleqbi1dv 3403 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
14 predeq3 6146 . . . . . . . . . 10 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1514sseq1d 3997 . . . . . . . . 9 (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1615cbvralvw 3449 . . . . . . . 8 (∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
1713, 16syl6bb 289 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1811, 17anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))
19 raleq 3405 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
20 fveq2 6664 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑔𝑦) = (𝑔𝑤))
2114reseq2d 5847 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))
2221fveq2d 6668 . . . . . . . . 9 (𝑦 = 𝑤 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2320, 22eqeq12d 2837 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2423cbvralvw 3449 . . . . . . 7 (∀𝑦𝑧 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2519, 24syl6bb 289 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2610, 18, 253anbi123d 1432 . . . . 5 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
2726cbvexvw 2040 . . . 4 (∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
289, 27syl6bb 289 . . 3 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
2928cbvabv 2889 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
301, 29eqtri 2844 1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1533  wex 1776  {cab 2799  wral 3138  wss 3935  cres 5551  Predcpred 6141   Fn wfn 6344  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357
This theorem is referenced by:  wfrlem2  7949  wfrlem3  7950  wfrlem3a  7951  wfrlem4  7952  wfrdmcl  7957
  Copyright terms: Public domain W3C validator