MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem17 Structured version   Visualization version   GIF version

Theorem wfrlem17 7823
Description: Without using ax-rep 5081, show that all restrictions of wrecs are sets. (Contributed by Scott Fenton, 31-Jul-2020.)
Hypotheses
Ref Expression
wfrlem17.1 𝑅 We 𝐴
wfrlem17.2 𝑅 Se 𝐴
wfrlem17.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem17 (𝑋 ∈ dom 𝐹 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)

Proof of Theorem wfrlem17
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem17.1 . . . . 5 𝑅 We 𝐴
2 wfrlem17.2 . . . . 5 𝑅 Se 𝐴
3 wfrlem17.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfun 7817 . . . 4 Fun 𝐹
5 funfvop 6685 . . . 4 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
64, 5mpan 686 . . 3 (𝑋 ∈ dom 𝐹 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
7 df-wrecs 7798 . . . . . 6 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
83, 7eqtri 2819 . . . . 5 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
98eleq2i 2874 . . . 4 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
10 eluni 4748 . . . 4 (⟨𝑋, (𝐹𝑋)⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑔(⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}))
119, 10bitri 276 . . 3 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ∃𝑔(⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}))
126, 11sylib 219 . 2 (𝑋 ∈ dom 𝐹 → ∃𝑔(⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}))
13 simprr 769 . . . 4 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
14 eqid 2795 . . . . 5 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
15 vex 3440 . . . . 5 𝑔 ∈ V
1614, 15wfrlem3a 7808 . . . 4 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1713, 16sylib 219 . . 3 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
18 3simpa 1141 . . . . 5 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))
19 simprlr 776 . . . . . . . . 9 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
20 elssuni 4774 . . . . . . . . . 10 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑔 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
2120, 8syl6sseqr 3939 . . . . . . . . 9 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑔𝐹)
2219, 21syl 17 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑔𝐹)
23 predeq3 6027 . . . . . . . . . . 11 (𝑤 = 𝑋 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑋))
2423sseq1d 3919 . . . . . . . . . 10 (𝑤 = 𝑋 → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
25 simprrr 778 . . . . . . . . . . 11 (((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))) → ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
2625adantl 482 . . . . . . . . . 10 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
27 simprll 775 . . . . . . . . . . . . 13 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔)
28 df-br 4963 . . . . . . . . . . . . 13 (𝑋𝑔(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔)
2927, 28sylibr 235 . . . . . . . . . . . 12 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑋𝑔(𝐹𝑋))
30 fvex 6551 . . . . . . . . . . . . 13 (𝐹𝑋) ∈ V
31 breldmg 5664 . . . . . . . . . . . . 13 ((𝑋 ∈ dom 𝐹 ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝑔(𝐹𝑋)) → 𝑋 ∈ dom 𝑔)
3230, 31mp3an2 1441 . . . . . . . . . . . 12 ((𝑋 ∈ dom 𝐹𝑋𝑔(𝐹𝑋)) → 𝑋 ∈ dom 𝑔)
3329, 32syldan 591 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑋 ∈ dom 𝑔)
34 simprrl 777 . . . . . . . . . . . 12 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑔 Fn 𝑧)
35 fndm 6325 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
3634, 35syl 17 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → dom 𝑔 = 𝑧)
3733, 36eleqtrd 2885 . . . . . . . . . 10 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑋𝑧)
3824, 26, 37rspcdva 3565 . . . . . . . . 9 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧)
3938, 36sseqtr4d 3929 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔)
40 fun2ssres 6269 . . . . . . . 8 ((Fun 𝐹𝑔𝐹 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑋)))
414, 22, 39, 40mp3an2i 1458 . . . . . . 7 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑋)))
4215resex 5780 . . . . . . 7 (𝑔 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V
4341, 42syl6eqel 2891 . . . . . 6 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
4443expr 457 . . . . 5 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V))
4518, 44syl5 34 . . . 4 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V))
4645exlimdv 1911 . . 3 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V))
4717, 46mpd 15 . 2 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
4812, 47exlimddv 1913 1 (𝑋 ∈ dom 𝐹 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wral 3105  Vcvv 3437  wss 3859  cop 4478   cuni 4745   class class class wbr 4962   Se wse 5400   We wwe 5401  dom cdm 5443  cres 5445  Predcpred 6022  Fun wfun 6219   Fn wfn 6220  cfv 6225  wrecscwrecs 7797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-iota 6189  df-fun 6227  df-fn 6228  df-fv 6233  df-wrecs 7798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator