![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunstr | Structured version Visualization version GIF version |
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
wunstr.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunstr.s | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
Ref | Expression |
---|---|
wunstr | ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunstr.u | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunstr.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
3 | 1, 2 | wunrn 10772 | . . 3 ⊢ (𝜑 → ran 𝑆 ∈ 𝑈) |
4 | 1, 3 | wununi 10749 | . 2 ⊢ (𝜑 → ∪ ran 𝑆 ∈ 𝑈) |
5 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | strfvss 17189 | . . 3 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
8 | 1, 4, 7 | wunss 10755 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ∪ cuni 4913 ran crn 5683 ‘cfv 6554 WUnicwun 10743 Slot cslot 17183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6506 df-fun 6556 df-fv 6562 df-wun 10745 df-slot 17184 |
This theorem is referenced by: basndxelwund 17225 1strwunOLD 17234 wunress 17264 wunressOLD 17265 wunfunc 17920 wunfuncOLD 17921 wunnat 17979 wunnatOLD 17980 catcslotelcl 18135 catcoppccl 18139 catcoppcclOLD 18140 catcfuccl 18141 catcfucclOLD 18142 estrcbasbas 18154 catcxpccl 18231 catcxpcclOLD 18232 ringcbasbas 20651 ringcbasbasALTV 47689 |
Copyright terms: Public domain | W3C validator |