![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunstr | Structured version Visualization version GIF version |
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
wunstr.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunstr.s | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
Ref | Expression |
---|---|
wunstr | ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunstr.u | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunstr.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
3 | 1, 2 | wunrn 10798 | . . 3 ⊢ (𝜑 → ran 𝑆 ∈ 𝑈) |
4 | 1, 3 | wununi 10775 | . 2 ⊢ (𝜑 → ∪ ran 𝑆 ∈ 𝑈) |
5 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | strfvss 17234 | . . 3 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
8 | 1, 4, 7 | wunss 10781 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ran crn 5701 ‘cfv 6573 WUnicwun 10769 Slot cslot 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-wun 10771 df-slot 17229 |
This theorem is referenced by: basndxelwund 17270 1strwunOLD 17279 wunress 17309 wunressOLD 17310 wunfunc 17965 wunfuncOLD 17966 wunnat 18024 wunnatOLD 18025 catcslotelcl 18180 catcoppccl 18184 catcoppcclOLD 18185 catcfuccl 18186 catcfucclOLD 18187 estrcbasbas 18199 catcxpccl 18276 catcxpcclOLD 18277 ringcbasbas 20695 ringcbasbasALTV 48035 |
Copyright terms: Public domain | W3C validator |