MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunstr Structured version   Visualization version   GIF version

Theorem wunstr 16889
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
strfvss.e 𝐸 = Slot 𝑁
wunstr.u (𝜑𝑈 ∈ WUni)
wunstr.s (𝜑𝑆𝑈)
Assertion
Ref Expression
wunstr (𝜑 → (𝐸𝑆) ∈ 𝑈)

Proof of Theorem wunstr
StepHypRef Expression
1 wunstr.u . 2 (𝜑𝑈 ∈ WUni)
2 wunstr.s . . . 4 (𝜑𝑆𝑈)
31, 2wunrn 10485 . . 3 (𝜑 → ran 𝑆𝑈)
41, 3wununi 10462 . 2 (𝜑 ran 𝑆𝑈)
5 strfvss.e . . . 4 𝐸 = Slot 𝑁
65strfvss 16888 . . 3 (𝐸𝑆) ⊆ ran 𝑆
76a1i 11 . 2 (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
81, 4, 7wunss 10468 1 (𝜑 → (𝐸𝑆) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887   cuni 4839  ran crn 5590  cfv 6433  WUnicwun 10456  Slot cslot 16882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-wun 10458  df-slot 16883
This theorem is referenced by:  basndxelwund  16924  1strwunOLD  16933  wunress  16960  wunressOLD  16961  wunfunc  17614  wunfuncOLD  17615  wunnat  17672  wunnatOLD  17673  catcslotelcl  17828  catcoppccl  17832  catcoppcclOLD  17833  catcfuccl  17834  catcfucclOLD  17835  estrcbasbas  17847  catcxpccl  17924  catcxpcclOLD  17925  ringcbasbas  45592  ringcbasbasALTV  45616
  Copyright terms: Public domain W3C validator