| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunstr | Structured version Visualization version GIF version | ||
| Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
| wunstr.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunstr.s | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunstr | ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunstr.u | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunstr.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
| 3 | 1, 2 | wunrn 10617 | . . 3 ⊢ (𝜑 → ran 𝑆 ∈ 𝑈) |
| 4 | 1, 3 | wununi 10594 | . 2 ⊢ (𝜑 → ∪ ran 𝑆 ∈ 𝑈) |
| 5 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5 | strfvss 17095 | . . 3 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| 8 | 1, 4, 7 | wunss 10600 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 ran crn 5617 ‘cfv 6481 WUnicwun 10588 Slot cslot 17089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-wun 10590 df-slot 17090 |
| This theorem is referenced by: basndxelwund 17128 wunress 17157 wunfunc 17805 wunnat 17863 catcslotelcl 18017 catcoppccl 18021 catcfuccl 18022 estrcbasbas 18034 catcxpccl 18110 ringcbasbas 20586 ringcbasbasALTV 48342 |
| Copyright terms: Public domain | W3C validator |