MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunstr Structured version   Visualization version   GIF version

Theorem wunstr 17128
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
strfvss.e 𝐸 = Slot 𝑁
wunstr.u (𝜑𝑈 ∈ WUni)
wunstr.s (𝜑𝑆𝑈)
Assertion
Ref Expression
wunstr (𝜑 → (𝐸𝑆) ∈ 𝑈)

Proof of Theorem wunstr
StepHypRef Expression
1 wunstr.u . 2 (𝜑𝑈 ∈ WUni)
2 wunstr.s . . . 4 (𝜑𝑆𝑈)
31, 2wunrn 10730 . . 3 (𝜑 → ran 𝑆𝑈)
41, 3wununi 10707 . 2 (𝜑 ran 𝑆𝑈)
5 strfvss.e . . . 4 𝐸 = Slot 𝑁
65strfvss 17127 . . 3 (𝐸𝑆) ⊆ ran 𝑆
76a1i 11 . 2 (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
81, 4, 7wunss 10713 1 (𝜑 → (𝐸𝑆) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wss 3948   cuni 4908  ran crn 5677  cfv 6543  WUnicwun 10701  Slot cslot 17121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-wun 10703  df-slot 17122
This theorem is referenced by:  basndxelwund  17163  1strwunOLD  17172  wunress  17202  wunressOLD  17203  wunfunc  17858  wunfuncOLD  17859  wunnat  17917  wunnatOLD  17918  catcslotelcl  18073  catcoppccl  18077  catcoppcclOLD  18078  catcfuccl  18079  catcfucclOLD  18080  estrcbasbas  18092  catcxpccl  18169  catcxpcclOLD  18170  ringcbasbas  20565  ringcbasbasALTV  47149
  Copyright terms: Public domain W3C validator