MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunstr Structured version   Visualization version   GIF version

Theorem wunstr 16817
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
strfvss.e 𝐸 = Slot 𝑁
wunstr.u (𝜑𝑈 ∈ WUni)
wunstr.s (𝜑𝑆𝑈)
Assertion
Ref Expression
wunstr (𝜑 → (𝐸𝑆) ∈ 𝑈)

Proof of Theorem wunstr
StepHypRef Expression
1 wunstr.u . 2 (𝜑𝑈 ∈ WUni)
2 wunstr.s . . . 4 (𝜑𝑆𝑈)
31, 2wunrn 10416 . . 3 (𝜑 → ran 𝑆𝑈)
41, 3wununi 10393 . 2 (𝜑 ran 𝑆𝑈)
5 strfvss.e . . . 4 𝐸 = Slot 𝑁
65strfvss 16816 . . 3 (𝐸𝑆) ⊆ ran 𝑆
76a1i 11 . 2 (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
81, 4, 7wunss 10399 1 (𝜑 → (𝐸𝑆) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883   cuni 4836  ran crn 5581  cfv 6418  WUnicwun 10387  Slot cslot 16810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-wun 10389  df-slot 16811
This theorem is referenced by:  basndxelwund  16852  1strwunOLD  16859  wunress  16886  wunressOLD  16887  wunfunc  17530  wunfuncOLD  17531  wunnat  17588  wunnatOLD  17589  catcslotelcl  17744  catcoppccl  17748  catcoppcclOLD  17749  catcfuccl  17750  catcfucclOLD  17751  estrcbasbas  17763  catcxpccl  17840  catcxpcclOLD  17841  ringcbasbas  45480  ringcbasbasALTV  45504
  Copyright terms: Public domain W3C validator