Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunstr | Structured version Visualization version GIF version |
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
wunstr.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunstr.s | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
Ref | Expression |
---|---|
wunstr | ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunstr.u | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunstr.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
3 | 1, 2 | wunrn 10485 | . . 3 ⊢ (𝜑 → ran 𝑆 ∈ 𝑈) |
4 | 1, 3 | wununi 10462 | . 2 ⊢ (𝜑 → ∪ ran 𝑆 ∈ 𝑈) |
5 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | strfvss 16888 | . . 3 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
8 | 1, 4, 7 | wunss 10468 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 WUnicwun 10456 Slot cslot 16882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-wun 10458 df-slot 16883 |
This theorem is referenced by: basndxelwund 16924 1strwunOLD 16933 wunress 16960 wunressOLD 16961 wunfunc 17614 wunfuncOLD 17615 wunnat 17672 wunnatOLD 17673 catcslotelcl 17828 catcoppccl 17832 catcoppcclOLD 17833 catcfuccl 17834 catcfucclOLD 17835 estrcbasbas 17847 catcxpccl 17924 catcxpcclOLD 17925 ringcbasbas 45592 ringcbasbasALTV 45616 |
Copyright terms: Public domain | W3C validator |