Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmsusp | Structured version Visualization version GIF version |
Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017.) |
Ref | Expression |
---|---|
xmsusp.x | ⊢ 𝑋 = (Base‘𝐹) |
xmsusp.d | ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) |
xmsusp.u | ⊢ 𝑈 = (UnifSt‘𝐹) |
Ref | Expression |
---|---|
xmsusp | ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 = (metUnif‘𝐷)) | |
2 | simp1 1134 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑋 ≠ ∅) | |
3 | xmsusp.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐹) | |
4 | xmsusp.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) | |
5 | 3, 4 | xmsxmet 23517 | . . . . 5 ⊢ (𝐹 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 5 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | xmetpsmet 23409 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | |
8 | metuust 23622 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) | |
9 | 7, 8 | sylan2 592 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
10 | 2, 6, 9 | syl2anc 583 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
11 | 1, 10 | eqeltrd 2839 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 ∈ (UnifOn‘𝑋)) |
12 | xmetutop 23630 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) | |
13 | 2, 6, 12 | syl2anc 583 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) |
14 | 1 | fveq2d 6760 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘𝑈) = (unifTop‘(metUnif‘𝐷))) |
15 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
16 | 15, 3, 4 | xmstopn 23512 | . . . 4 ⊢ (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
17 | 16 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
18 | 13, 14, 17 | 3eqtr4rd 2789 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (unifTop‘𝑈)) |
19 | xmsusp.u | . . 3 ⊢ 𝑈 = (UnifSt‘𝐹) | |
20 | 3, 19, 15 | isusp 23321 | . 2 ⊢ (𝐹 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝐹) = (unifTop‘𝑈))) |
21 | 11, 18, 20 | sylanbrc 582 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 × cxp 5578 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 distcds 16897 TopOpenctopn 17049 PsMetcpsmet 20494 ∞Metcxmet 20495 MetOpencmopn 20500 metUnifcmetu 20501 UnifOncust 23259 unifTopcutop 23290 UnifStcuss 23313 UnifSpcusp 23314 ∞MetSpcxms 23378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-metu 20509 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-fil 22905 df-ust 23260 df-utop 23291 df-usp 23317 df-xms 23381 |
This theorem is referenced by: cmetcusp1 24422 |
Copyright terms: Public domain | W3C validator |