Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmsusp | Structured version Visualization version GIF version |
Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017.) |
Ref | Expression |
---|---|
xmsusp.x | ⊢ 𝑋 = (Base‘𝐹) |
xmsusp.d | ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) |
xmsusp.u | ⊢ 𝑈 = (UnifSt‘𝐹) |
Ref | Expression |
---|---|
xmsusp | ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 = (metUnif‘𝐷)) | |
2 | simp1 1135 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑋 ≠ ∅) | |
3 | xmsusp.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐹) | |
4 | xmsusp.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) | |
5 | 3, 4 | xmsxmet 23607 | . . . . 5 ⊢ (𝐹 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 5 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | xmetpsmet 23499 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | |
8 | metuust 23714 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) | |
9 | 7, 8 | sylan2 593 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
10 | 2, 6, 9 | syl2anc 584 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
11 | 1, 10 | eqeltrd 2841 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 ∈ (UnifOn‘𝑋)) |
12 | xmetutop 23722 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) | |
13 | 2, 6, 12 | syl2anc 584 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) |
14 | 1 | fveq2d 6775 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘𝑈) = (unifTop‘(metUnif‘𝐷))) |
15 | eqid 2740 | . . . . 5 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
16 | 15, 3, 4 | xmstopn 23602 | . . . 4 ⊢ (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
17 | 16 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
18 | 13, 14, 17 | 3eqtr4rd 2791 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (unifTop‘𝑈)) |
19 | xmsusp.u | . . 3 ⊢ 𝑈 = (UnifSt‘𝐹) | |
20 | 3, 19, 15 | isusp 23411 | . 2 ⊢ (𝐹 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝐹) = (unifTop‘𝑈))) |
21 | 11, 18, 20 | sylanbrc 583 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 × cxp 5588 ↾ cres 5592 ‘cfv 6432 Basecbs 16910 distcds 16969 TopOpenctopn 17130 PsMetcpsmet 20579 ∞Metcxmet 20580 MetOpencmopn 20585 metUnifcmetu 20586 UnifOncust 23349 unifTopcutop 23380 UnifStcuss 23403 UnifSpcusp 23404 ∞MetSpcxms 23468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ico 13084 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-metu 20594 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-fil 22995 df-ust 23350 df-utop 23381 df-usp 23407 df-xms 23471 |
This theorem is referenced by: cmetcusp1 24515 |
Copyright terms: Public domain | W3C validator |