![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmsusp | Structured version Visualization version GIF version |
Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017.) |
Ref | Expression |
---|---|
xmsusp.x | ⊢ 𝑋 = (Base‘𝐹) |
xmsusp.d | ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) |
xmsusp.u | ⊢ 𝑈 = (UnifSt‘𝐹) |
Ref | Expression |
---|---|
xmsusp | ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 = (metUnif‘𝐷)) | |
2 | simp1 1137 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑋 ≠ ∅) | |
3 | xmsusp.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐹) | |
4 | xmsusp.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) | |
5 | 3, 4 | xmsxmet 23962 | . . . . 5 ⊢ (𝐹 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 5 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | xmetpsmet 23854 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | |
8 | metuust 24069 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) | |
9 | 7, 8 | sylan2 594 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
10 | 2, 6, 9 | syl2anc 585 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
11 | 1, 10 | eqeltrd 2834 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 ∈ (UnifOn‘𝑋)) |
12 | xmetutop 24077 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) | |
13 | 2, 6, 12 | syl2anc 585 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) |
14 | 1 | fveq2d 6896 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘𝑈) = (unifTop‘(metUnif‘𝐷))) |
15 | eqid 2733 | . . . . 5 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
16 | 15, 3, 4 | xmstopn 23957 | . . . 4 ⊢ (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
17 | 16 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
18 | 13, 14, 17 | 3eqtr4rd 2784 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (unifTop‘𝑈)) |
19 | xmsusp.u | . . 3 ⊢ 𝑈 = (UnifSt‘𝐹) | |
20 | 3, 19, 15 | isusp 23766 | . 2 ⊢ (𝐹 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝐹) = (unifTop‘𝑈))) |
21 | 11, 18, 20 | sylanbrc 584 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∅c0 4323 × cxp 5675 ↾ cres 5679 ‘cfv 6544 Basecbs 17144 distcds 17206 TopOpenctopn 17367 PsMetcpsmet 20928 ∞Metcxmet 20929 MetOpencmopn 20934 metUnifcmetu 20935 UnifOncust 23704 unifTopcutop 23735 UnifStcuss 23758 UnifSpcusp 23759 ∞MetSpcxms 23823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ico 13330 df-topgen 17389 df-psmet 20936 df-xmet 20937 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-metu 20943 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-fil 23350 df-ust 23705 df-utop 23736 df-usp 23762 df-xms 23826 |
This theorem is referenced by: cmetcusp1 24870 |
Copyright terms: Public domain | W3C validator |