| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmsusp | Structured version Visualization version GIF version | ||
| Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017.) |
| Ref | Expression |
|---|---|
| xmsusp.x | ⊢ 𝑋 = (Base‘𝐹) |
| xmsusp.d | ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) |
| xmsusp.u | ⊢ 𝑈 = (UnifSt‘𝐹) |
| Ref | Expression |
|---|---|
| xmsusp | ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 = (metUnif‘𝐷)) | |
| 2 | simp1 1136 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑋 ≠ ∅) | |
| 3 | xmsusp.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐹) | |
| 4 | xmsusp.d | . . . . . 6 ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) | |
| 5 | 3, 4 | xmsxmet 24371 | . . . . 5 ⊢ (𝐹 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | 5 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 7 | xmetpsmet 24263 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | |
| 8 | metuust 24475 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) | |
| 9 | 7, 8 | sylan2 593 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
| 10 | 2, 6, 9 | syl2anc 584 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
| 11 | 1, 10 | eqeltrd 2831 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 12 | xmetutop 24483 | . . . 4 ⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (∞Met‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) | |
| 13 | 2, 6, 12 | syl2anc 584 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘(metUnif‘𝐷)) = (MetOpen‘𝐷)) |
| 14 | 1 | fveq2d 6826 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (unifTop‘𝑈) = (unifTop‘(metUnif‘𝐷))) |
| 15 | eqid 2731 | . . . . 5 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
| 16 | 15, 3, 4 | xmstopn 24366 | . . . 4 ⊢ (𝐹 ∈ ∞MetSp → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (MetOpen‘𝐷)) |
| 18 | 13, 14, 17 | 3eqtr4rd 2777 | . 2 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → (TopOpen‘𝐹) = (unifTop‘𝑈)) |
| 19 | xmsusp.u | . . 3 ⊢ 𝑈 = (UnifSt‘𝐹) | |
| 20 | 3, 19, 15 | isusp 24176 | . 2 ⊢ (𝐹 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝐹) = (unifTop‘𝑈))) |
| 21 | 11, 18, 20 | sylanbrc 583 | 1 ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ UnifSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 × cxp 5612 ↾ cres 5616 ‘cfv 6481 Basecbs 17120 distcds 17170 TopOpenctopn 17325 PsMetcpsmet 21275 ∞Metcxmet 21276 MetOpencmopn 21281 metUnifcmetu 21282 UnifOncust 24115 unifTopcutop 24145 UnifStcuss 24168 UnifSpcusp 24169 ∞MetSpcxms 24232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ico 13251 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-metu 21290 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-fil 23761 df-ust 24116 df-utop 24146 df-usp 24172 df-xms 24235 |
| This theorem is referenced by: cmetcusp1 25280 |
| Copyright terms: Public domain | W3C validator |