MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxms Structured version   Visualization version   GIF version

Theorem imasf1oxms 23643
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxms.r (𝜑𝑅 ∈ ∞MetSp)
Assertion
Ref Expression
imasf1oxms (𝜑𝑈 ∈ ∞MetSp)

Proof of Theorem imasf1oxms
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1obl.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oxms.r . . . . 5 (𝜑𝑅 ∈ ∞MetSp)
5 eqid 2740 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 eqid 2740 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
7 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2740 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
97, 8xmsxmet 23607 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
104, 9syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
112sqxpeqd 5622 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1211reseq2d 5890 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
132fveq2d 6775 . . . . . 6 (𝜑 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑅)))
1410, 12, 133eltr4d 2856 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
151, 2, 3, 4, 5, 6, 14imasf1oxmet 23526 . . . 4 (𝜑 → (dist‘𝑈) ∈ (∞Met‘𝐵))
16 f1ofo 6721 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
173, 16syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
181, 2, 17, 4imasbas 17221 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1918fveq2d 6775 . . . 4 (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘𝑈)))
2015, 19eleqtrd 2843 . . 3 (𝜑 → (dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)))
21 ssid 3948 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
22 xmetres2 23512 . . 3 (((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
2320, 21, 22sylancl 586 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
24 eqid 2740 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
25 eqid 2740 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
261, 2, 17, 4, 24, 25imastopn 22869 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
2724, 7, 8xmstopn 23602 . . . . . 6 (𝑅 ∈ ∞MetSp → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
284, 27syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
2912fveq2d 6775 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
3028, 29eqtr4d 2783 . . . 4 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))
3130oveq1d 7286 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹))
32 blbas 23581 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
3314, 32syl 17 . . . . 5 (𝜑 → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
34 unirnbl 23571 . . . . . . 7 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉)
35 f1oeq2 6703 . . . . . . 7 ( ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
3614, 34, 353syl 18 . . . . . 6 (𝜑 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
373, 36mpbird 256 . . . . 5 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵)
38 eqid 2740 . . . . . 6 ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
3938tgqtop 22861 . . . . 5 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵) → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
4033, 37, 39syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
41 eqid 2740 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
4241mopnval 23589 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4314, 42syl 17 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4443oveq1d 7286 . . . 4 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹))
45 eqid 2740 . . . . . . 7 (MetOpen‘(dist‘𝑈)) = (MetOpen‘(dist‘𝑈))
4645mopnval 23589 . . . . . 6 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
4715, 46syl 17 . . . . 5 (𝜑 → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
48 xmetf 23480 . . . . . . . 8 ((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
4920, 48syl 17 . . . . . . 7 (𝜑 → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
50 ffn 6598 . . . . . . 7 ((dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ* → (dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)))
51 fnresdm 6549 . . . . . . 7 ((dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5249, 50, 513syl 18 . . . . . 6 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5352fveq2d 6775 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (MetOpen‘(dist‘𝑈)))
543ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1-onto𝐵)
55 f1of1 6713 . . . . . . . . . . . . . . 15 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
5654, 55syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1𝐵)
57 cnvimass 5988 . . . . . . . . . . . . . . 15 (𝐹𝑥) ⊆ dom 𝐹
58 f1odm 6718 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝐵 → dom 𝐹 = 𝑉)
5954, 58syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → dom 𝐹 = 𝑉)
6057, 59sseqtrid 3978 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹𝑥) ⊆ 𝑉)
6114ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
62 simprl 768 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑦𝑉)
63 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
64 blssm 23569 . . . . . . . . . . . . . . 15 ((((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) ∧ 𝑦𝑉𝑟 ∈ ℝ*) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
6561, 62, 63, 64syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
66 f1imaeq 7135 . . . . . . . . . . . . . 14 ((𝐹:𝑉1-1𝐵 ∧ ((𝐹𝑥) ⊆ 𝑉 ∧ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6756, 60, 65, 66syl12anc 834 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6854, 16syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉onto𝐵)
69 simplr 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑥𝐵)
70 foimacnv 6731 . . . . . . . . . . . . . . 15 ((𝐹:𝑉onto𝐵𝑥𝐵) → (𝐹 “ (𝐹𝑥)) = 𝑥)
7168, 69, 70syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
721ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑈 = (𝐹s 𝑅))
732ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑉 = (Base‘𝑅))
744ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑅 ∈ ∞MetSp)
7572, 73, 54, 74, 5, 6, 61, 62, 63imasf1obl 23642 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
7675eqcomd 2746 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
7771, 76eqeq12d 2756 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
7867, 77bitr3d 280 . . . . . . . . . . . 12 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
79782rexbidva 3230 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
803adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
81 f1ofn 6715 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
82 oveq1 7278 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) → (𝑧(ball‘(dist‘𝑈))𝑟) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
8382eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑦) → (𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8483rexbidv 3228 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑦) → (∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8584rexrn 6960 . . . . . . . . . . . 12 (𝐹 Fn 𝑉 → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8680, 81, 853syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
87 forn 6689 . . . . . . . . . . . . 13 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
8880, 16, 873syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ran 𝐹 = 𝐵)
8988rexeqdv 3348 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9079, 86, 893bitr2d 307 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9114adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
92 blrn 23560 . . . . . . . . . . 11 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9415adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (dist‘𝑈) ∈ (∞Met‘𝐵))
95 blrn 23560 . . . . . . . . . . 11 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9694, 95syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9790, 93, 963bitr4d 311 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
9897pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
99 f1ofo 6721 . . . . . . . . . 10 (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10037, 99syl 17 . . . . . . . . 9 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10138elqtop2 22850 . . . . . . . . 9 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵) → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
10233, 100, 101syl2anc 584 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
103 blf 23558 . . . . . . . . . . . 12 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵)
104 frn 6605 . . . . . . . . . . . 12 ((ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
10515, 103, 1043syl 18 . . . . . . . . . . 11 (𝜑 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
106105sseld 3925 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ∈ 𝒫 𝐵))
107 elpwi 4548 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
108106, 107syl6 35 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥𝐵))
109108pm4.71rd 563 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
11098, 102, 1093bitr4d 311 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
111110eqrdv 2738 . . . . . 6 (𝜑 → (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ran (ball‘(dist‘𝑈)))
112111fveq2d 6775 . . . . 5 (𝜑 → (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)) = (topGen‘ran (ball‘(dist‘𝑈))))
11347, 53, 1123eqtr4d 2790 . . . 4 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
11440, 44, 1133eqtr4d 2790 . . 3 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
11526, 31, 1143eqtrd 2784 . 2 (𝜑 → (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
116 eqid 2740 . . 3 (Base‘𝑈) = (Base‘𝑈)
117 eqid 2740 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
11825, 116, 117isxms2 23599 . 2 (𝑈 ∈ ∞MetSp ↔ (((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)) ∧ (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))))
11923, 115, 118sylanbrc 583 1 (𝜑𝑈 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wrex 3067  wss 3892  𝒫 cpw 4539   cuni 4845   × cxp 5588  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592  cima 5593   Fn wfn 6427  wf 6428  1-1wf1 6429  ontowfo 6430  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  *cxr 11009  Basecbs 16910  distcds 16969  TopOpenctopn 17130  topGenctg 17146   qTop cqtop 17212  s cimas 17213  ∞Metcxmet 20580  ballcbl 20582  MetOpencmopn 20585  TopBasesctb 22093  ∞MetSpcxms 23468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-xrs 17211  df-qtop 17216  df-imas 17217  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-xms 23471
This theorem is referenced by:  imasf1oms  23644  xpsxms  23688
  Copyright terms: Public domain W3C validator