MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxms Structured version   Visualization version   GIF version

Theorem imasf1oxms 24404
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxms.r (𝜑𝑅 ∈ ∞MetSp)
Assertion
Ref Expression
imasf1oxms (𝜑𝑈 ∈ ∞MetSp)

Proof of Theorem imasf1oxms
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1obl.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oxms.r . . . . 5 (𝜑𝑅 ∈ ∞MetSp)
5 eqid 2731 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 eqid 2731 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
7 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2731 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
97, 8xmsxmet 24371 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
104, 9syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
112sqxpeqd 5646 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1211reseq2d 5927 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
132fveq2d 6826 . . . . . 6 (𝜑 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑅)))
1410, 12, 133eltr4d 2846 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
151, 2, 3, 4, 5, 6, 14imasf1oxmet 24290 . . . 4 (𝜑 → (dist‘𝑈) ∈ (∞Met‘𝐵))
16 f1ofo 6770 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
173, 16syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
181, 2, 17, 4imasbas 17416 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1918fveq2d 6826 . . . 4 (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘𝑈)))
2015, 19eleqtrd 2833 . . 3 (𝜑 → (dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)))
21 ssid 3952 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
22 xmetres2 24276 . . 3 (((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
2320, 21, 22sylancl 586 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
24 eqid 2731 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
25 eqid 2731 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
261, 2, 17, 4, 24, 25imastopn 23635 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
2724, 7, 8xmstopn 24366 . . . . . 6 (𝑅 ∈ ∞MetSp → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
284, 27syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
2912fveq2d 6826 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
3028, 29eqtr4d 2769 . . . 4 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))
3130oveq1d 7361 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹))
32 blbas 24345 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
3314, 32syl 17 . . . . 5 (𝜑 → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
34 unirnbl 24335 . . . . . . 7 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉)
35 f1oeq2 6752 . . . . . . 7 ( ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
3614, 34, 353syl 18 . . . . . 6 (𝜑 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
373, 36mpbird 257 . . . . 5 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵)
38 eqid 2731 . . . . . 6 ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
3938tgqtop 23627 . . . . 5 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵) → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
4033, 37, 39syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
41 eqid 2731 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
4241mopnval 24353 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4314, 42syl 17 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4443oveq1d 7361 . . . 4 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹))
45 eqid 2731 . . . . . . 7 (MetOpen‘(dist‘𝑈)) = (MetOpen‘(dist‘𝑈))
4645mopnval 24353 . . . . . 6 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
4715, 46syl 17 . . . . 5 (𝜑 → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
48 xmetf 24244 . . . . . . . 8 ((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
4920, 48syl 17 . . . . . . 7 (𝜑 → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
50 ffn 6651 . . . . . . 7 ((dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ* → (dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)))
51 fnresdm 6600 . . . . . . 7 ((dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5249, 50, 513syl 18 . . . . . 6 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5352fveq2d 6826 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (MetOpen‘(dist‘𝑈)))
543ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1-onto𝐵)
55 f1of1 6762 . . . . . . . . . . . . . . 15 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
5654, 55syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1𝐵)
57 cnvimass 6030 . . . . . . . . . . . . . . 15 (𝐹𝑥) ⊆ dom 𝐹
58 f1odm 6767 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝐵 → dom 𝐹 = 𝑉)
5954, 58syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → dom 𝐹 = 𝑉)
6057, 59sseqtrid 3972 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹𝑥) ⊆ 𝑉)
6114ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
62 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑦𝑉)
63 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
64 blssm 24333 . . . . . . . . . . . . . . 15 ((((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) ∧ 𝑦𝑉𝑟 ∈ ℝ*) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
6561, 62, 63, 64syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
66 f1imaeq 7199 . . . . . . . . . . . . . 14 ((𝐹:𝑉1-1𝐵 ∧ ((𝐹𝑥) ⊆ 𝑉 ∧ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6756, 60, 65, 66syl12anc 836 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6854, 16syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉onto𝐵)
69 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑥𝐵)
70 foimacnv 6780 . . . . . . . . . . . . . . 15 ((𝐹:𝑉onto𝐵𝑥𝐵) → (𝐹 “ (𝐹𝑥)) = 𝑥)
7168, 69, 70syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
721ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑈 = (𝐹s 𝑅))
732ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑉 = (Base‘𝑅))
744ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑅 ∈ ∞MetSp)
7572, 73, 54, 74, 5, 6, 61, 62, 63imasf1obl 24403 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
7675eqcomd 2737 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
7771, 76eqeq12d 2747 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
7867, 77bitr3d 281 . . . . . . . . . . . 12 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
79782rexbidva 3195 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
803adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
81 f1ofn 6764 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
82 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) → (𝑧(ball‘(dist‘𝑈))𝑟) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
8382eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑦) → (𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8483rexbidv 3156 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑦) → (∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8584rexrn 7020 . . . . . . . . . . . 12 (𝐹 Fn 𝑉 → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8680, 81, 853syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
87 forn 6738 . . . . . . . . . . . . 13 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
8880, 16, 873syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ran 𝐹 = 𝐵)
8988rexeqdv 3293 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9079, 86, 893bitr2d 307 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9114adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
92 blrn 24324 . . . . . . . . . . 11 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9415adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (dist‘𝑈) ∈ (∞Met‘𝐵))
95 blrn 24324 . . . . . . . . . . 11 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9694, 95syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9790, 93, 963bitr4d 311 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
9897pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
99 f1ofo 6770 . . . . . . . . . 10 (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10037, 99syl 17 . . . . . . . . 9 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10138elqtop2 23616 . . . . . . . . 9 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵) → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
10233, 100, 101syl2anc 584 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
103 blf 24322 . . . . . . . . . . . 12 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵)
104 frn 6658 . . . . . . . . . . . 12 ((ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
10515, 103, 1043syl 18 . . . . . . . . . . 11 (𝜑 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
106105sseld 3928 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ∈ 𝒫 𝐵))
107 elpwi 4554 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
108106, 107syl6 35 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥𝐵))
109108pm4.71rd 562 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
11098, 102, 1093bitr4d 311 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
111110eqrdv 2729 . . . . . 6 (𝜑 → (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ran (ball‘(dist‘𝑈)))
112111fveq2d 6826 . . . . 5 (𝜑 → (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)) = (topGen‘ran (ball‘(dist‘𝑈))))
11347, 53, 1123eqtr4d 2776 . . . 4 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
11440, 44, 1133eqtr4d 2776 . . 3 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
11526, 31, 1143eqtrd 2770 . 2 (𝜑 → (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
116 eqid 2731 . . 3 (Base‘𝑈) = (Base‘𝑈)
117 eqid 2731 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
11825, 116, 117isxms2 24363 . 2 (𝑈 ∈ ∞MetSp ↔ (((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)) ∧ (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))))
11923, 115, 118sylanbrc 583 1 (𝜑𝑈 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3897  𝒫 cpw 4547   cuni 4856   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  *cxr 11145  Basecbs 17120  distcds 17170  TopOpenctopn 17325  topGenctg 17341   qTop cqtop 17407  s cimas 17408  ∞Metcxmet 21276  ballcbl 21278  MetOpencmopn 21281  TopBasesctb 22860  ∞MetSpcxms 24232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-xrs 17406  df-qtop 17411  df-imas 17412  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235
This theorem is referenced by:  imasf1oms  24405  xpsxms  24449
  Copyright terms: Public domain W3C validator