Step | Hyp | Ref
| Expression |
1 | | imasf1obl.u |
. . . . 5
β’ (π β π = (πΉ βs π
)) |
2 | | imasf1obl.v |
. . . . 5
β’ (π β π = (Baseβπ
)) |
3 | | imasf1obl.f |
. . . . 5
β’ (π β πΉ:πβ1-1-ontoβπ΅) |
4 | | imasf1oxms.r |
. . . . 5
β’ (π β π
β βMetSp) |
5 | | eqid 2732 |
. . . . 5
β’
((distβπ
)
βΎ (π Γ π)) = ((distβπ
) βΎ (π Γ π)) |
6 | | eqid 2732 |
. . . . 5
β’
(distβπ) =
(distβπ) |
7 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
8 | | eqid 2732 |
. . . . . . . 8
β’
((distβπ
)
βΎ ((Baseβπ
)
Γ (Baseβπ
))) =
((distβπ
) βΎ
((Baseβπ
) Γ
(Baseβπ
))) |
9 | 7, 8 | xmsxmet 23953 |
. . . . . . 7
β’ (π
β βMetSp β
((distβπ
) βΎ
((Baseβπ
) Γ
(Baseβπ
))) β
(βMetβ(Baseβπ
))) |
10 | 4, 9 | syl 17 |
. . . . . 6
β’ (π β ((distβπ
) βΎ ((Baseβπ
) Γ (Baseβπ
))) β
(βMetβ(Baseβπ
))) |
11 | 2 | sqxpeqd 5707 |
. . . . . . 7
β’ (π β (π Γ π) = ((Baseβπ
) Γ (Baseβπ
))) |
12 | 11 | reseq2d 5979 |
. . . . . 6
β’ (π β ((distβπ
) βΎ (π Γ π)) = ((distβπ
) βΎ ((Baseβπ
) Γ (Baseβπ
)))) |
13 | 2 | fveq2d 6892 |
. . . . . 6
β’ (π β (βMetβπ) =
(βMetβ(Baseβπ
))) |
14 | 10, 12, 13 | 3eltr4d 2848 |
. . . . 5
β’ (π β ((distβπ
) βΎ (π Γ π)) β (βMetβπ)) |
15 | 1, 2, 3, 4, 5, 6, 14 | imasf1oxmet 23872 |
. . . 4
β’ (π β (distβπ) β (βMetβπ΅)) |
16 | | f1ofo 6837 |
. . . . . . 7
β’ (πΉ:πβ1-1-ontoβπ΅ β πΉ:πβontoβπ΅) |
17 | 3, 16 | syl 17 |
. . . . . 6
β’ (π β πΉ:πβontoβπ΅) |
18 | 1, 2, 17, 4 | imasbas 17454 |
. . . . 5
β’ (π β π΅ = (Baseβπ)) |
19 | 18 | fveq2d 6892 |
. . . 4
β’ (π β (βMetβπ΅) =
(βMetβ(Baseβπ))) |
20 | 15, 19 | eleqtrd 2835 |
. . 3
β’ (π β (distβπ) β
(βMetβ(Baseβπ))) |
21 | | ssid 4003 |
. . 3
β’
(Baseβπ)
β (Baseβπ) |
22 | | xmetres2 23858 |
. . 3
β’
(((distβπ)
β (βMetβ(Baseβπ)) β§ (Baseβπ) β (Baseβπ)) β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β
(βMetβ(Baseβπ))) |
23 | 20, 21, 22 | sylancl 586 |
. 2
β’ (π β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β
(βMetβ(Baseβπ))) |
24 | | eqid 2732 |
. . . 4
β’
(TopOpenβπ
) =
(TopOpenβπ
) |
25 | | eqid 2732 |
. . . 4
β’
(TopOpenβπ) =
(TopOpenβπ) |
26 | 1, 2, 17, 4, 24, 25 | imastopn 23215 |
. . 3
β’ (π β (TopOpenβπ) = ((TopOpenβπ
) qTop πΉ)) |
27 | 24, 7, 8 | xmstopn 23948 |
. . . . . 6
β’ (π
β βMetSp β
(TopOpenβπ
) =
(MetOpenβ((distβπ
) βΎ ((Baseβπ
) Γ (Baseβπ
))))) |
28 | 4, 27 | syl 17 |
. . . . 5
β’ (π β (TopOpenβπ
) =
(MetOpenβ((distβπ
) βΎ ((Baseβπ
) Γ (Baseβπ
))))) |
29 | 12 | fveq2d 6892 |
. . . . 5
β’ (π β
(MetOpenβ((distβπ
) βΎ (π Γ π))) = (MetOpenβ((distβπ
) βΎ ((Baseβπ
) Γ (Baseβπ
))))) |
30 | 28, 29 | eqtr4d 2775 |
. . . 4
β’ (π β (TopOpenβπ
) =
(MetOpenβ((distβπ
) βΎ (π Γ π)))) |
31 | 30 | oveq1d 7420 |
. . 3
β’ (π β ((TopOpenβπ
) qTop πΉ) = ((MetOpenβ((distβπ
) βΎ (π Γ π))) qTop πΉ)) |
32 | | blbas 23927 |
. . . . . 6
β’
(((distβπ
)
βΎ (π Γ π)) β
(βMetβπ) β
ran (ballβ((distβπ
) βΎ (π Γ π))) β TopBases) |
33 | 14, 32 | syl 17 |
. . . . 5
β’ (π β ran
(ballβ((distβπ
)
βΎ (π Γ π))) β
TopBases) |
34 | | unirnbl 23917 |
. . . . . . 7
β’
(((distβπ
)
βΎ (π Γ π)) β
(βMetβπ) β
βͺ ran (ballβ((distβπ
) βΎ (π Γ π))) = π) |
35 | | f1oeq2 6819 |
. . . . . . 7
β’ (βͺ ran (ballβ((distβπ
) βΎ (π Γ π))) = π β (πΉ:βͺ ran
(ballβ((distβπ
)
βΎ (π Γ π)))β1-1-ontoβπ΅ β πΉ:πβ1-1-ontoβπ΅)) |
36 | 14, 34, 35 | 3syl 18 |
. . . . . 6
β’ (π β (πΉ:βͺ ran
(ballβ((distβπ
)
βΎ (π Γ π)))β1-1-ontoβπ΅ β πΉ:πβ1-1-ontoβπ΅)) |
37 | 3, 36 | mpbird 256 |
. . . . 5
β’ (π β πΉ:βͺ ran
(ballβ((distβπ
)
βΎ (π Γ π)))β1-1-ontoβπ΅) |
38 | | eqid 2732 |
. . . . . 6
β’ βͺ ran (ballβ((distβπ
) βΎ (π Γ π))) = βͺ ran
(ballβ((distβπ
)
βΎ (π Γ π))) |
39 | 38 | tgqtop 23207 |
. . . . 5
β’ ((ran
(ballβ((distβπ
)
βΎ (π Γ π))) β TopBases β§ πΉ:βͺ
ran (ballβ((distβπ
) βΎ (π Γ π)))β1-1-ontoβπ΅) β ((topGenβran
(ballβ((distβπ
)
βΎ (π Γ π)))) qTop πΉ) = (topGenβ(ran
(ballβ((distβπ
)
βΎ (π Γ π))) qTop πΉ))) |
40 | 33, 37, 39 | syl2anc 584 |
. . . 4
β’ (π β ((topGenβran
(ballβ((distβπ
)
βΎ (π Γ π)))) qTop πΉ) = (topGenβ(ran
(ballβ((distβπ
)
βΎ (π Γ π))) qTop πΉ))) |
41 | | eqid 2732 |
. . . . . . 7
β’
(MetOpenβ((distβπ
) βΎ (π Γ π))) = (MetOpenβ((distβπ
) βΎ (π Γ π))) |
42 | 41 | mopnval 23935 |
. . . . . 6
β’
(((distβπ
)
βΎ (π Γ π)) β
(βMetβπ) β
(MetOpenβ((distβπ
) βΎ (π Γ π))) = (topGenβran
(ballβ((distβπ
)
βΎ (π Γ π))))) |
43 | 14, 42 | syl 17 |
. . . . 5
β’ (π β
(MetOpenβ((distβπ
) βΎ (π Γ π))) = (topGenβran
(ballβ((distβπ
)
βΎ (π Γ π))))) |
44 | 43 | oveq1d 7420 |
. . . 4
β’ (π β
((MetOpenβ((distβπ
) βΎ (π Γ π))) qTop πΉ) = ((topGenβran
(ballβ((distβπ
)
βΎ (π Γ π)))) qTop πΉ)) |
45 | | eqid 2732 |
. . . . . . 7
β’
(MetOpenβ(distβπ)) = (MetOpenβ(distβπ)) |
46 | 45 | mopnval 23935 |
. . . . . 6
β’
((distβπ)
β (βMetβπ΅)
β (MetOpenβ(distβπ)) = (topGenβran
(ballβ(distβπ)))) |
47 | 15, 46 | syl 17 |
. . . . 5
β’ (π β
(MetOpenβ(distβπ)) = (topGenβran
(ballβ(distβπ)))) |
48 | | xmetf 23826 |
. . . . . . . 8
β’
((distβπ)
β (βMetβ(Baseβπ)) β (distβπ):((Baseβπ) Γ (Baseβπ))βΆβ*) |
49 | 20, 48 | syl 17 |
. . . . . . 7
β’ (π β (distβπ):((Baseβπ) Γ (Baseβπ))βΆβ*) |
50 | | ffn 6714 |
. . . . . . 7
β’
((distβπ):((Baseβπ) Γ (Baseβπ))βΆβ* β
(distβπ) Fn
((Baseβπ) Γ
(Baseβπ))) |
51 | | fnresdm 6666 |
. . . . . . 7
β’
((distβπ) Fn
((Baseβπ) Γ
(Baseβπ)) β
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) =
(distβπ)) |
52 | 49, 50, 51 | 3syl 18 |
. . . . . 6
β’ (π β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) = (distβπ)) |
53 | 52 | fveq2d 6892 |
. . . . 5
β’ (π β
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) = (MetOpenβ(distβπ))) |
54 | 3 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β πΉ:πβ1-1-ontoβπ΅) |
55 | | f1of1 6829 |
. . . . . . . . . . . . . . 15
β’ (πΉ:πβ1-1-ontoβπ΅ β πΉ:πβ1-1βπ΅) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β πΉ:πβ1-1βπ΅) |
57 | | cnvimass 6077 |
. . . . . . . . . . . . . . 15
β’ (β‘πΉ β π₯) β dom πΉ |
58 | | f1odm 6834 |
. . . . . . . . . . . . . . . 16
β’ (πΉ:πβ1-1-ontoβπ΅ β dom πΉ = π) |
59 | 54, 58 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β dom
πΉ = π) |
60 | 57, 59 | sseqtrid 4033 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β (β‘πΉ β π₯) β π) |
61 | 14 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β
((distβπ
) βΎ
(π Γ π)) β
(βMetβπ)) |
62 | | simprl 769 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β π¦ β π) |
63 | | simprr 771 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β π β
β*) |
64 | | blssm 23915 |
. . . . . . . . . . . . . . 15
β’
((((distβπ
)
βΎ (π Γ π)) β
(βMetβπ) β§
π¦ β π β§ π β β*) β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π) β π) |
65 | 61, 62, 63, 64 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π) β π) |
66 | | f1imaeq 7260 |
. . . . . . . . . . . . . 14
β’ ((πΉ:πβ1-1βπ΅ β§ ((β‘πΉ β π₯) β π β§ (π¦(ballβ((distβπ
) βΎ (π Γ π)))π) β π)) β ((πΉ β (β‘πΉ β π₯)) = (πΉ β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π)) β (β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π))) |
67 | 56, 60, 65, 66 | syl12anc 835 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β ((πΉ β (β‘πΉ β π₯)) = (πΉ β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π)) β (β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π))) |
68 | 54, 16 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β πΉ:πβontoβπ΅) |
69 | | simplr 767 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β π₯ β π΅) |
70 | | foimacnv 6847 |
. . . . . . . . . . . . . . 15
β’ ((πΉ:πβontoβπ΅ β§ π₯ β π΅) β (πΉ β (β‘πΉ β π₯)) = π₯) |
71 | 68, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β (πΉ β (β‘πΉ β π₯)) = π₯) |
72 | 1 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β π = (πΉ βs π
)) |
73 | 2 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β π = (Baseβπ
)) |
74 | 4 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β π
β
βMetSp) |
75 | 72, 73, 54, 74, 5, 6, 61, 62, 63 | imasf1obl 23988 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β ((πΉβπ¦)(ballβ(distβπ))π) = (πΉ β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π))) |
76 | 75 | eqcomd 2738 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β (πΉ β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π)) = ((πΉβπ¦)(ballβ(distβπ))π)) |
77 | 71, 76 | eqeq12d 2748 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β ((πΉ β (β‘πΉ β π₯)) = (πΉ β (π¦(ballβ((distβπ
) βΎ (π Γ π)))π)) β π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
78 | 67, 77 | bitr3d 280 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β π΅) β§ (π¦ β π β§ π β β*)) β ((β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π) β π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
79 | 78 | 2rexbidva 3217 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π΅) β (βπ¦ β π βπ β β* (β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π) β βπ¦ β π βπ β β* π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
80 | 3 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π΅) β πΉ:πβ1-1-ontoβπ΅) |
81 | | f1ofn 6831 |
. . . . . . . . . . . 12
β’ (πΉ:πβ1-1-ontoβπ΅ β πΉ Fn π) |
82 | | oveq1 7412 |
. . . . . . . . . . . . . . 15
β’ (π§ = (πΉβπ¦) β (π§(ballβ(distβπ))π) = ((πΉβπ¦)(ballβ(distβπ))π)) |
83 | 82 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
β’ (π§ = (πΉβπ¦) β (π₯ = (π§(ballβ(distβπ))π) β π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
84 | 83 | rexbidv 3178 |
. . . . . . . . . . . . 13
β’ (π§ = (πΉβπ¦) β (βπ β β* π₯ = (π§(ballβ(distβπ))π) β βπ β β* π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
85 | 84 | rexrn 7085 |
. . . . . . . . . . . 12
β’ (πΉ Fn π β (βπ§ β ran πΉβπ β β* π₯ = (π§(ballβ(distβπ))π) β βπ¦ β π βπ β β* π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
86 | 80, 81, 85 | 3syl 18 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π΅) β (βπ§ β ran πΉβπ β β* π₯ = (π§(ballβ(distβπ))π) β βπ¦ β π βπ β β* π₯ = ((πΉβπ¦)(ballβ(distβπ))π))) |
87 | | forn 6805 |
. . . . . . . . . . . . 13
β’ (πΉ:πβontoβπ΅ β ran πΉ = π΅) |
88 | 80, 16, 87 | 3syl 18 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π΅) β ran πΉ = π΅) |
89 | 88 | rexeqdv 3326 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π΅) β (βπ§ β ran πΉβπ β β* π₯ = (π§(ballβ(distβπ))π) β βπ§ β π΅ βπ β β* π₯ = (π§(ballβ(distβπ))π))) |
90 | 79, 86, 89 | 3bitr2d 306 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π΅) β (βπ¦ β π βπ β β* (β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π) β βπ§ β π΅ βπ β β* π₯ = (π§(ballβ(distβπ))π))) |
91 | 14 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π΅) β ((distβπ
) βΎ (π Γ π)) β (βMetβπ)) |
92 | | blrn 23906 |
. . . . . . . . . . 11
β’
(((distβπ
)
βΎ (π Γ π)) β
(βMetβπ) β
((β‘πΉ β π₯) β ran (ballβ((distβπ
) βΎ (π Γ π))) β βπ¦ β π βπ β β* (β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π΅) β ((β‘πΉ β π₯) β ran (ballβ((distβπ
) βΎ (π Γ π))) β βπ¦ β π βπ β β* (β‘πΉ β π₯) = (π¦(ballβ((distβπ
) βΎ (π Γ π)))π))) |
94 | 15 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β π΅) β (distβπ) β (βMetβπ΅)) |
95 | | blrn 23906 |
. . . . . . . . . . 11
β’
((distβπ)
β (βMetβπ΅)
β (π₯ β ran
(ballβ(distβπ))
β βπ§ β
π΅ βπ β β* π₯ = (π§(ballβ(distβπ))π))) |
96 | 94, 95 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π΅) β (π₯ β ran (ballβ(distβπ)) β βπ§ β π΅ βπ β β* π₯ = (π§(ballβ(distβπ))π))) |
97 | 90, 93, 96 | 3bitr4d 310 |
. . . . . . . . 9
β’ ((π β§ π₯ β π΅) β ((β‘πΉ β π₯) β ran (ballβ((distβπ
) βΎ (π Γ π))) β π₯ β ran (ballβ(distβπ)))) |
98 | 97 | pm5.32da 579 |
. . . . . . . 8
β’ (π β ((π₯ β π΅ β§ (β‘πΉ β π₯) β ran (ballβ((distβπ
) βΎ (π Γ π)))) β (π₯ β π΅ β§ π₯ β ran (ballβ(distβπ))))) |
99 | | f1ofo 6837 |
. . . . . . . . . 10
β’ (πΉ:βͺ
ran (ballβ((distβπ
) βΎ (π Γ π)))β1-1-ontoβπ΅ β πΉ:βͺ ran
(ballβ((distβπ
)
βΎ (π Γ π)))βontoβπ΅) |
100 | 37, 99 | syl 17 |
. . . . . . . . 9
β’ (π β πΉ:βͺ ran
(ballβ((distβπ
)
βΎ (π Γ π)))βontoβπ΅) |
101 | 38 | elqtop2 23196 |
. . . . . . . . 9
β’ ((ran
(ballβ((distβπ
)
βΎ (π Γ π))) β TopBases β§ πΉ:βͺ
ran (ballβ((distβπ
) βΎ (π Γ π)))βontoβπ΅) β (π₯ β (ran (ballβ((distβπ
) βΎ (π Γ π))) qTop πΉ) β (π₯ β π΅ β§ (β‘πΉ β π₯) β ran (ballβ((distβπ
) βΎ (π Γ π)))))) |
102 | 33, 100, 101 | syl2anc 584 |
. . . . . . . 8
β’ (π β (π₯ β (ran (ballβ((distβπ
) βΎ (π Γ π))) qTop πΉ) β (π₯ β π΅ β§ (β‘πΉ β π₯) β ran (ballβ((distβπ
) βΎ (π Γ π)))))) |
103 | | blf 23904 |
. . . . . . . . . . . 12
β’
((distβπ)
β (βMetβπ΅)
β (ballβ(distβπ)):(π΅ Γ
β*)βΆπ« π΅) |
104 | | frn 6721 |
. . . . . . . . . . . 12
β’
((ballβ(distβπ)):(π΅ Γ
β*)βΆπ« π΅ β ran (ballβ(distβπ)) β π« π΅) |
105 | 15, 103, 104 | 3syl 18 |
. . . . . . . . . . 11
β’ (π β ran
(ballβ(distβπ))
β π« π΅) |
106 | 105 | sseld 3980 |
. . . . . . . . . 10
β’ (π β (π₯ β ran (ballβ(distβπ)) β π₯ β π« π΅)) |
107 | | elpwi 4608 |
. . . . . . . . . 10
β’ (π₯ β π« π΅ β π₯ β π΅) |
108 | 106, 107 | syl6 35 |
. . . . . . . . 9
β’ (π β (π₯ β ran (ballβ(distβπ)) β π₯ β π΅)) |
109 | 108 | pm4.71rd 563 |
. . . . . . . 8
β’ (π β (π₯ β ran (ballβ(distβπ)) β (π₯ β π΅ β§ π₯ β ran (ballβ(distβπ))))) |
110 | 98, 102, 109 | 3bitr4d 310 |
. . . . . . 7
β’ (π β (π₯ β (ran (ballβ((distβπ
) βΎ (π Γ π))) qTop πΉ) β π₯ β ran (ballβ(distβπ)))) |
111 | 110 | eqrdv 2730 |
. . . . . 6
β’ (π β (ran
(ballβ((distβπ
)
βΎ (π Γ π))) qTop πΉ) = ran (ballβ(distβπ))) |
112 | 111 | fveq2d 6892 |
. . . . 5
β’ (π β (topGenβ(ran
(ballβ((distβπ
)
βΎ (π Γ π))) qTop πΉ)) = (topGenβran
(ballβ(distβπ)))) |
113 | 47, 53, 112 | 3eqtr4d 2782 |
. . . 4
β’ (π β
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) = (topGenβ(ran
(ballβ((distβπ
)
βΎ (π Γ π))) qTop πΉ))) |
114 | 40, 44, 113 | 3eqtr4d 2782 |
. . 3
β’ (π β
((MetOpenβ((distβπ
) βΎ (π Γ π))) qTop πΉ) = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) |
115 | 26, 31, 114 | 3eqtrd 2776 |
. 2
β’ (π β (TopOpenβπ) =
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) |
116 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
117 | | eqid 2732 |
. . 3
β’
((distβπ)
βΎ ((Baseβπ)
Γ (Baseβπ))) =
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) |
118 | 25, 116, 117 | isxms2 23945 |
. 2
β’ (π β βMetSp β
(((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) β
(βMetβ(Baseβπ)) β§ (TopOpenβπ) = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))))) |
119 | 23, 115, 118 | sylanbrc 583 |
1
β’ (π β π β βMetSp) |