MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxms Structured version   Visualization version   GIF version

Theorem imasf1oxms 23645
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxms.r (𝜑𝑅 ∈ ∞MetSp)
Assertion
Ref Expression
imasf1oxms (𝜑𝑈 ∈ ∞MetSp)

Proof of Theorem imasf1oxms
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1obl.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oxms.r . . . . 5 (𝜑𝑅 ∈ ∞MetSp)
5 eqid 2738 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 eqid 2738 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
7 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2738 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
97, 8xmsxmet 23609 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
104, 9syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
112sqxpeqd 5621 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1211reseq2d 5891 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
132fveq2d 6778 . . . . . 6 (𝜑 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑅)))
1410, 12, 133eltr4d 2854 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
151, 2, 3, 4, 5, 6, 14imasf1oxmet 23528 . . . 4 (𝜑 → (dist‘𝑈) ∈ (∞Met‘𝐵))
16 f1ofo 6723 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
173, 16syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
181, 2, 17, 4imasbas 17223 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1918fveq2d 6778 . . . 4 (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘𝑈)))
2015, 19eleqtrd 2841 . . 3 (𝜑 → (dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)))
21 ssid 3943 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
22 xmetres2 23514 . . 3 (((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
2320, 21, 22sylancl 586 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
24 eqid 2738 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
25 eqid 2738 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
261, 2, 17, 4, 24, 25imastopn 22871 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
2724, 7, 8xmstopn 23604 . . . . . 6 (𝑅 ∈ ∞MetSp → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
284, 27syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
2912fveq2d 6778 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
3028, 29eqtr4d 2781 . . . 4 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))
3130oveq1d 7290 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹))
32 blbas 23583 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
3314, 32syl 17 . . . . 5 (𝜑 → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
34 unirnbl 23573 . . . . . . 7 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉)
35 f1oeq2 6705 . . . . . . 7 ( ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
3614, 34, 353syl 18 . . . . . 6 (𝜑 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
373, 36mpbird 256 . . . . 5 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵)
38 eqid 2738 . . . . . 6 ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
3938tgqtop 22863 . . . . 5 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵) → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
4033, 37, 39syl2anc 584 . . . 4 (𝜑 → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
41 eqid 2738 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
4241mopnval 23591 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4314, 42syl 17 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4443oveq1d 7290 . . . 4 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹))
45 eqid 2738 . . . . . . 7 (MetOpen‘(dist‘𝑈)) = (MetOpen‘(dist‘𝑈))
4645mopnval 23591 . . . . . 6 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
4715, 46syl 17 . . . . 5 (𝜑 → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
48 xmetf 23482 . . . . . . . 8 ((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
4920, 48syl 17 . . . . . . 7 (𝜑 → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
50 ffn 6600 . . . . . . 7 ((dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ* → (dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)))
51 fnresdm 6551 . . . . . . 7 ((dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5249, 50, 513syl 18 . . . . . 6 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5352fveq2d 6778 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (MetOpen‘(dist‘𝑈)))
543ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1-onto𝐵)
55 f1of1 6715 . . . . . . . . . . . . . . 15 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
5654, 55syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1𝐵)
57 cnvimass 5989 . . . . . . . . . . . . . . 15 (𝐹𝑥) ⊆ dom 𝐹
58 f1odm 6720 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝐵 → dom 𝐹 = 𝑉)
5954, 58syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → dom 𝐹 = 𝑉)
6057, 59sseqtrid 3973 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹𝑥) ⊆ 𝑉)
6114ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
62 simprl 768 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑦𝑉)
63 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
64 blssm 23571 . . . . . . . . . . . . . . 15 ((((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) ∧ 𝑦𝑉𝑟 ∈ ℝ*) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
6561, 62, 63, 64syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
66 f1imaeq 7138 . . . . . . . . . . . . . 14 ((𝐹:𝑉1-1𝐵 ∧ ((𝐹𝑥) ⊆ 𝑉 ∧ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6756, 60, 65, 66syl12anc 834 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6854, 16syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉onto𝐵)
69 simplr 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑥𝐵)
70 foimacnv 6733 . . . . . . . . . . . . . . 15 ((𝐹:𝑉onto𝐵𝑥𝐵) → (𝐹 “ (𝐹𝑥)) = 𝑥)
7168, 69, 70syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
721ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑈 = (𝐹s 𝑅))
732ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑉 = (Base‘𝑅))
744ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑅 ∈ ∞MetSp)
7572, 73, 54, 74, 5, 6, 61, 62, 63imasf1obl 23644 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
7675eqcomd 2744 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
7771, 76eqeq12d 2754 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
7867, 77bitr3d 280 . . . . . . . . . . . 12 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
79782rexbidva 3228 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
803adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
81 f1ofn 6717 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
82 oveq1 7282 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) → (𝑧(ball‘(dist‘𝑈))𝑟) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
8382eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑦) → (𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8483rexbidv 3226 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑦) → (∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8584rexrn 6963 . . . . . . . . . . . 12 (𝐹 Fn 𝑉 → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8680, 81, 853syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
87 forn 6691 . . . . . . . . . . . . 13 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
8880, 16, 873syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ran 𝐹 = 𝐵)
8988rexeqdv 3349 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9079, 86, 893bitr2d 307 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9114adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
92 blrn 23562 . . . . . . . . . . 11 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9415adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (dist‘𝑈) ∈ (∞Met‘𝐵))
95 blrn 23562 . . . . . . . . . . 11 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9694, 95syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9790, 93, 963bitr4d 311 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
9897pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
99 f1ofo 6723 . . . . . . . . . 10 (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10037, 99syl 17 . . . . . . . . 9 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10138elqtop2 22852 . . . . . . . . 9 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵) → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
10233, 100, 101syl2anc 584 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
103 blf 23560 . . . . . . . . . . . 12 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵)
104 frn 6607 . . . . . . . . . . . 12 ((ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
10515, 103, 1043syl 18 . . . . . . . . . . 11 (𝜑 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
106105sseld 3920 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ∈ 𝒫 𝐵))
107 elpwi 4542 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
108106, 107syl6 35 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥𝐵))
109108pm4.71rd 563 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
11098, 102, 1093bitr4d 311 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
111110eqrdv 2736 . . . . . 6 (𝜑 → (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ran (ball‘(dist‘𝑈)))
112111fveq2d 6778 . . . . 5 (𝜑 → (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)) = (topGen‘ran (ball‘(dist‘𝑈))))
11347, 53, 1123eqtr4d 2788 . . . 4 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
11440, 44, 1133eqtr4d 2788 . . 3 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
11526, 31, 1143eqtrd 2782 . 2 (𝜑 → (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
116 eqid 2738 . . 3 (Base‘𝑈) = (Base‘𝑈)
117 eqid 2738 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
11825, 116, 117isxms2 23601 . 2 (𝑈 ∈ ∞MetSp ↔ (((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)) ∧ (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))))
11923, 115, 118sylanbrc 583 1 (𝜑𝑈 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  𝒫 cpw 4533   cuni 4839   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592   Fn wfn 6428  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  *cxr 11008  Basecbs 16912  distcds 16971  TopOpenctopn 17132  topGenctg 17148   qTop cqtop 17214  s cimas 17215  ∞Metcxmet 20582  ballcbl 20584  MetOpencmopn 20587  TopBasesctb 22095  ∞MetSpcxms 23470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-xrs 17213  df-qtop 17218  df-imas 17219  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473
This theorem is referenced by:  imasf1oms  23646  xpsxms  23690
  Copyright terms: Public domain W3C validator