| Step | Hyp | Ref
| Expression |
| 1 | | imasf1obl.u |
. . . . 5
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 2 | | imasf1obl.v |
. . . . 5
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 3 | | imasf1obl.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| 4 | | imasf1oxms.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
| 5 | | eqid 2736 |
. . . . 5
⊢
((dist‘𝑅)
↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
| 6 | | eqid 2736 |
. . . . 5
⊢
(dist‘𝑈) =
(dist‘𝑈) |
| 7 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | | eqid 2736 |
. . . . . . . 8
⊢
((dist‘𝑅)
↾ ((Base‘𝑅)
× (Base‘𝑅))) =
((dist‘𝑅) ↾
((Base‘𝑅) ×
(Base‘𝑅))) |
| 9 | 7, 8 | xmsxmet 24400 |
. . . . . . 7
⊢ (𝑅 ∈ ∞MetSp →
((dist‘𝑅) ↾
((Base‘𝑅) ×
(Base‘𝑅))) ∈
(∞Met‘(Base‘𝑅))) |
| 10 | 4, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈
(∞Met‘(Base‘𝑅))) |
| 11 | 2 | sqxpeqd 5691 |
. . . . . . 7
⊢ (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅))) |
| 12 | 11 | reseq2d 5971 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) |
| 13 | 2 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → (∞Met‘𝑉) =
(∞Met‘(Base‘𝑅))) |
| 14 | 10, 12, 13 | 3eltr4d 2850 |
. . . . 5
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉)) |
| 15 | 1, 2, 3, 4, 5, 6, 14 | imasf1oxmet 24319 |
. . . 4
⊢ (𝜑 → (dist‘𝑈) ∈ (∞Met‘𝐵)) |
| 16 | | f1ofo 6830 |
. . . . . . 7
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) |
| 17 | 3, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 18 | 1, 2, 17, 4 | imasbas 17531 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 19 | 18 | fveq2d 6885 |
. . . 4
⊢ (𝜑 → (∞Met‘𝐵) =
(∞Met‘(Base‘𝑈))) |
| 20 | 15, 19 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → (dist‘𝑈) ∈
(∞Met‘(Base‘𝑈))) |
| 21 | | ssid 3986 |
. . 3
⊢
(Base‘𝑈)
⊆ (Base‘𝑈) |
| 22 | | xmetres2 24305 |
. . 3
⊢
(((dist‘𝑈)
∈ (∞Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈
(∞Met‘(Base‘𝑈))) |
| 23 | 20, 21, 22 | sylancl 586 |
. 2
⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈
(∞Met‘(Base‘𝑈))) |
| 24 | | eqid 2736 |
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
| 25 | | eqid 2736 |
. . . 4
⊢
(TopOpen‘𝑈) =
(TopOpen‘𝑈) |
| 26 | 1, 2, 17, 4, 24, 25 | imastopn 23663 |
. . 3
⊢ (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹)) |
| 27 | 24, 7, 8 | xmstopn 24395 |
. . . . . 6
⊢ (𝑅 ∈ ∞MetSp →
(TopOpen‘𝑅) =
(MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
| 28 | 4, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (TopOpen‘𝑅) =
(MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
| 29 | 12 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
| 30 | 28, 29 | eqtr4d 2774 |
. . . 4
⊢ (𝜑 → (TopOpen‘𝑅) =
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) |
| 31 | 30 | oveq1d 7425 |
. . 3
⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)) |
| 32 | | blbas 24374 |
. . . . . 6
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases) |
| 33 | 14, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) ∈
TopBases) |
| 34 | | unirnbl 24364 |
. . . . . . 7
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
∪ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉) |
| 35 | | f1oeq2 6812 |
. . . . . . 7
⊢ (∪ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉 → (𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→𝐵)) |
| 36 | 14, 34, 35 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→𝐵)) |
| 37 | 3, 36 | mpbird 257 |
. . . . 5
⊢ (𝜑 → 𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–1-1-onto→𝐵) |
| 38 | | eqid 2736 |
. . . . . 6
⊢ ∪ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = ∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) |
| 39 | 38 | tgqtop 23655 |
. . . . 5
⊢ ((ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹:∪
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto→𝐵) → ((topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹))) |
| 40 | 33, 37, 39 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹))) |
| 41 | | eqid 2736 |
. . . . . . 7
⊢
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) |
| 42 | 41 | mopnval 24382 |
. . . . . 6
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))))) |
| 43 | 14, 42 | syl 17 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))))) |
| 44 | 43 | oveq1d 7425 |
. . . 4
⊢ (𝜑 →
((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ((topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))) qTop 𝐹)) |
| 45 | | eqid 2736 |
. . . . . . 7
⊢
(MetOpen‘(dist‘𝑈)) = (MetOpen‘(dist‘𝑈)) |
| 46 | 45 | mopnval 24382 |
. . . . . 6
⊢
((dist‘𝑈)
∈ (∞Met‘𝐵)
→ (MetOpen‘(dist‘𝑈)) = (topGen‘ran
(ball‘(dist‘𝑈)))) |
| 47 | 15, 46 | syl 17 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘(dist‘𝑈)) = (topGen‘ran
(ball‘(dist‘𝑈)))) |
| 48 | | xmetf 24273 |
. . . . . . . 8
⊢
((dist‘𝑈)
∈ (∞Met‘(Base‘𝑈)) → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*) |
| 49 | 20, 48 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*) |
| 50 | | ffn 6711 |
. . . . . . 7
⊢
((dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ* →
(dist‘𝑈) Fn
((Base‘𝑈) ×
(Base‘𝑈))) |
| 51 | | fnresdm 6662 |
. . . . . . 7
⊢
((dist‘𝑈) Fn
((Base‘𝑈) ×
(Base‘𝑈)) →
((dist‘𝑈) ↾
((Base‘𝑈) ×
(Base‘𝑈))) =
(dist‘𝑈)) |
| 52 | 49, 50, 51 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈)) |
| 53 | 52 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (MetOpen‘(dist‘𝑈))) |
| 54 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝐹:𝑉–1-1-onto→𝐵) |
| 55 | | f1of1 6822 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–1-1→𝐵) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝐹:𝑉–1-1→𝐵) |
| 57 | | cnvimass 6074 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
| 58 | | f1odm 6827 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→𝐵 → dom 𝐹 = 𝑉) |
| 59 | 54, 58 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → dom
𝐹 = 𝑉) |
| 60 | 57, 59 | sseqtrid 4006 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (◡𝐹 “ 𝑥) ⊆ 𝑉) |
| 61 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) →
((dist‘𝑅) ↾
(𝑉 × 𝑉)) ∈
(∞Met‘𝑉)) |
| 62 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑦 ∈ 𝑉) |
| 63 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑟 ∈
ℝ*) |
| 64 | | blssm 24362 |
. . . . . . . . . . . . . . 15
⊢
((((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) ∧
𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉) |
| 65 | 61, 62, 63, 64 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉) |
| 66 | | f1imaeq 7263 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((◡𝐹 “ 𝑥) ⊆ 𝑉 ∧ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)) → ((𝐹 “ (◡𝐹 “ 𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
| 67 | 56, 60, 65, 66 | syl12anc 836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((𝐹 “ (◡𝐹 “ 𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
| 68 | 54, 16 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝐹:𝑉–onto→𝐵) |
| 69 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑥 ⊆ 𝐵) |
| 70 | | foimacnv 6840 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–onto→𝐵 ∧ 𝑥 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑥)) = 𝑥) |
| 71 | 68, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (𝐹 “ (◡𝐹 “ 𝑥)) = 𝑥) |
| 72 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑈 = (𝐹 “s 𝑅)) |
| 73 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑉 = (Base‘𝑅)) |
| 74 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑅 ∈
∞MetSp) |
| 75 | 72, 73, 54, 74, 5, 6, 61, 62, 63 | imasf1obl 24432 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
| 76 | 75 | eqcomd 2742 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟)) |
| 77 | 71, 76 | eqeq12d 2752 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((𝐹 “ (◡𝐹 “ 𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 78 | 67, 77 | bitr3d 281 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 79 | 78 | 2rexbidva 3208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 80 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝑉–1-1-onto→𝐵) |
| 81 | | f1ofn 6824 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) |
| 82 | | oveq1 7417 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑦) → (𝑧(ball‘(dist‘𝑈))𝑟) = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟)) |
| 83 | 82 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐹‘𝑦) → (𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 84 | 83 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹‘𝑦) → (∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 85 | 84 | rexrn 7082 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑉 → (∃𝑧 ∈ ran 𝐹∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 86 | 80, 81, 85 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑧 ∈ ran 𝐹∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
| 87 | | forn 6798 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
| 88 | 80, 16, 87 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ran 𝐹 = 𝐵) |
| 89 | 88 | rexeqdv 3310 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑧 ∈ ran 𝐹∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑧 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
| 90 | 79, 86, 89 | 3bitr2d 307 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑧 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
| 91 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉)) |
| 92 | | blrn 24353 |
. . . . . . . . . . 11
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
((◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ((◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
| 94 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (dist‘𝑈) ∈ (∞Met‘𝐵)) |
| 95 | | blrn 24353 |
. . . . . . . . . . 11
⊢
((dist‘𝑈)
∈ (∞Met‘𝐵)
→ (𝑥 ∈ ran
(ball‘(dist‘𝑈))
↔ ∃𝑧 ∈
𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
| 97 | 90, 93, 96 | 3bitr4d 311 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ((◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈)))) |
| 98 | 97 | pm5.32da 579 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ⊆ 𝐵 ∧ (◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran (ball‘(dist‘𝑈))))) |
| 99 | | f1ofo 6830 |
. . . . . . . . . 10
⊢ (𝐹:∪
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto→𝐵 → 𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–onto→𝐵) |
| 100 | 37, 99 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–onto→𝐵) |
| 101 | 38 | elqtop2 23644 |
. . . . . . . . 9
⊢ ((ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹:∪
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto→𝐵) → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥 ⊆ 𝐵 ∧ (◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))) |
| 102 | 33, 100, 101 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥 ⊆ 𝐵 ∧ (◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))) |
| 103 | | blf 24351 |
. . . . . . . . . . . 12
⊢
((dist‘𝑈)
∈ (∞Met‘𝐵)
→ (ball‘(dist‘𝑈)):(𝐵 ×
ℝ*)⟶𝒫 𝐵) |
| 104 | | frn 6718 |
. . . . . . . . . . . 12
⊢
((ball‘(dist‘𝑈)):(𝐵 ×
ℝ*)⟶𝒫 𝐵 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵) |
| 105 | 15, 103, 104 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ran
(ball‘(dist‘𝑈))
⊆ 𝒫 𝐵) |
| 106 | 105 | sseld 3962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ∈ 𝒫 𝐵)) |
| 107 | | elpwi 4587 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵) |
| 108 | 106, 107 | syl6 35 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ⊆ 𝐵)) |
| 109 | 108 | pm4.71rd 562 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran (ball‘(dist‘𝑈))))) |
| 110 | 98, 102, 109 | 3bitr4d 311 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈)))) |
| 111 | 110 | eqrdv 2734 |
. . . . . 6
⊢ (𝜑 → (ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹) = ran (ball‘(dist‘𝑈))) |
| 112 | 111 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 → (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹)) = (topGen‘ran
(ball‘(dist‘𝑈)))) |
| 113 | 47, 53, 112 | 3eqtr4d 2781 |
. . . 4
⊢ (𝜑 →
(MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹))) |
| 114 | 40, 44, 113 | 3eqtr4d 2781 |
. . 3
⊢ (𝜑 →
((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))) |
| 115 | 26, 31, 114 | 3eqtrd 2775 |
. 2
⊢ (𝜑 → (TopOpen‘𝑈) =
(MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))) |
| 116 | | eqid 2736 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 117 | | eqid 2736 |
. . 3
⊢
((dist‘𝑈)
↾ ((Base‘𝑈)
× (Base‘𝑈))) =
((dist‘𝑈) ↾
((Base‘𝑈) ×
(Base‘𝑈))) |
| 118 | 25, 116, 117 | isxms2 24392 |
. 2
⊢ (𝑈 ∈ ∞MetSp ↔
(((dist‘𝑈) ↾
((Base‘𝑈) ×
(Base‘𝑈))) ∈
(∞Met‘(Base‘𝑈)) ∧ (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))) |
| 119 | 23, 115, 118 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |