Step | Hyp | Ref
| Expression |
1 | | imasf1obl.u |
. . . . 5
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasf1obl.v |
. . . . 5
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | imasf1obl.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
4 | | imasf1oxms.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
5 | | eqid 2740 |
. . . . 5
⊢
((dist‘𝑅)
↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
6 | | eqid 2740 |
. . . . 5
⊢
(dist‘𝑈) =
(dist‘𝑈) |
7 | | eqid 2740 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | | eqid 2740 |
. . . . . . . 8
⊢
((dist‘𝑅)
↾ ((Base‘𝑅)
× (Base‘𝑅))) =
((dist‘𝑅) ↾
((Base‘𝑅) ×
(Base‘𝑅))) |
9 | 7, 8 | xmsxmet 23607 |
. . . . . . 7
⊢ (𝑅 ∈ ∞MetSp →
((dist‘𝑅) ↾
((Base‘𝑅) ×
(Base‘𝑅))) ∈
(∞Met‘(Base‘𝑅))) |
10 | 4, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈
(∞Met‘(Base‘𝑅))) |
11 | 2 | sqxpeqd 5622 |
. . . . . . 7
⊢ (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅))) |
12 | 11 | reseq2d 5890 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) |
13 | 2 | fveq2d 6775 |
. . . . . 6
⊢ (𝜑 → (∞Met‘𝑉) =
(∞Met‘(Base‘𝑅))) |
14 | 10, 12, 13 | 3eltr4d 2856 |
. . . . 5
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉)) |
15 | 1, 2, 3, 4, 5, 6, 14 | imasf1oxmet 23526 |
. . . 4
⊢ (𝜑 → (dist‘𝑈) ∈ (∞Met‘𝐵)) |
16 | | f1ofo 6721 |
. . . . . . 7
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) |
17 | 3, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
18 | 1, 2, 17, 4 | imasbas 17221 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
19 | 18 | fveq2d 6775 |
. . . 4
⊢ (𝜑 → (∞Met‘𝐵) =
(∞Met‘(Base‘𝑈))) |
20 | 15, 19 | eleqtrd 2843 |
. . 3
⊢ (𝜑 → (dist‘𝑈) ∈
(∞Met‘(Base‘𝑈))) |
21 | | ssid 3948 |
. . 3
⊢
(Base‘𝑈)
⊆ (Base‘𝑈) |
22 | | xmetres2 23512 |
. . 3
⊢
(((dist‘𝑈)
∈ (∞Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈
(∞Met‘(Base‘𝑈))) |
23 | 20, 21, 22 | sylancl 586 |
. 2
⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈
(∞Met‘(Base‘𝑈))) |
24 | | eqid 2740 |
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
25 | | eqid 2740 |
. . . 4
⊢
(TopOpen‘𝑈) =
(TopOpen‘𝑈) |
26 | 1, 2, 17, 4, 24, 25 | imastopn 22869 |
. . 3
⊢ (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹)) |
27 | 24, 7, 8 | xmstopn 23602 |
. . . . . 6
⊢ (𝑅 ∈ ∞MetSp →
(TopOpen‘𝑅) =
(MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
28 | 4, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (TopOpen‘𝑅) =
(MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
29 | 12 | fveq2d 6775 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
30 | 28, 29 | eqtr4d 2783 |
. . . 4
⊢ (𝜑 → (TopOpen‘𝑅) =
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) |
31 | 30 | oveq1d 7286 |
. . 3
⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)) |
32 | | blbas 23581 |
. . . . . 6
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases) |
33 | 14, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) ∈
TopBases) |
34 | | unirnbl 23571 |
. . . . . . 7
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
∪ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉) |
35 | | f1oeq2 6703 |
. . . . . . 7
⊢ (∪ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉 → (𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→𝐵)) |
36 | 14, 34, 35 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→𝐵)) |
37 | 3, 36 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–1-1-onto→𝐵) |
38 | | eqid 2740 |
. . . . . 6
⊢ ∪ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = ∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) |
39 | 38 | tgqtop 22861 |
. . . . 5
⊢ ((ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹:∪
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto→𝐵) → ((topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹))) |
40 | 33, 37, 39 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹))) |
41 | | eqid 2740 |
. . . . . . 7
⊢
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) |
42 | 41 | mopnval 23589 |
. . . . . 6
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))))) |
43 | 14, 42 | syl 17 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))))) |
44 | 43 | oveq1d 7286 |
. . . 4
⊢ (𝜑 →
((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ((topGen‘ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))) qTop 𝐹)) |
45 | | eqid 2740 |
. . . . . . 7
⊢
(MetOpen‘(dist‘𝑈)) = (MetOpen‘(dist‘𝑈)) |
46 | 45 | mopnval 23589 |
. . . . . 6
⊢
((dist‘𝑈)
∈ (∞Met‘𝐵)
→ (MetOpen‘(dist‘𝑈)) = (topGen‘ran
(ball‘(dist‘𝑈)))) |
47 | 15, 46 | syl 17 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘(dist‘𝑈)) = (topGen‘ran
(ball‘(dist‘𝑈)))) |
48 | | xmetf 23480 |
. . . . . . . 8
⊢
((dist‘𝑈)
∈ (∞Met‘(Base‘𝑈)) → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*) |
49 | 20, 48 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*) |
50 | | ffn 6598 |
. . . . . . 7
⊢
((dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ* →
(dist‘𝑈) Fn
((Base‘𝑈) ×
(Base‘𝑈))) |
51 | | fnresdm 6549 |
. . . . . . 7
⊢
((dist‘𝑈) Fn
((Base‘𝑈) ×
(Base‘𝑈)) →
((dist‘𝑈) ↾
((Base‘𝑈) ×
(Base‘𝑈))) =
(dist‘𝑈)) |
52 | 49, 50, 51 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈)) |
53 | 52 | fveq2d 6775 |
. . . . 5
⊢ (𝜑 →
(MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (MetOpen‘(dist‘𝑈))) |
54 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝐹:𝑉–1-1-onto→𝐵) |
55 | | f1of1 6713 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–1-1→𝐵) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝐹:𝑉–1-1→𝐵) |
57 | | cnvimass 5988 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
58 | | f1odm 6718 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→𝐵 → dom 𝐹 = 𝑉) |
59 | 54, 58 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → dom
𝐹 = 𝑉) |
60 | 57, 59 | sseqtrid 3978 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (◡𝐹 “ 𝑥) ⊆ 𝑉) |
61 | 14 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) →
((dist‘𝑅) ↾
(𝑉 × 𝑉)) ∈
(∞Met‘𝑉)) |
62 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑦 ∈ 𝑉) |
63 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑟 ∈
ℝ*) |
64 | | blssm 23569 |
. . . . . . . . . . . . . . 15
⊢
((((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) ∧
𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉) |
65 | 61, 62, 63, 64 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉) |
66 | | f1imaeq 7135 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((◡𝐹 “ 𝑥) ⊆ 𝑉 ∧ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)) → ((𝐹 “ (◡𝐹 “ 𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
67 | 56, 60, 65, 66 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((𝐹 “ (◡𝐹 “ 𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
68 | 54, 16 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝐹:𝑉–onto→𝐵) |
69 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑥 ⊆ 𝐵) |
70 | | foimacnv 6731 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–onto→𝐵 ∧ 𝑥 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑥)) = 𝑥) |
71 | 68, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (𝐹 “ (◡𝐹 “ 𝑥)) = 𝑥) |
72 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑈 = (𝐹 “s 𝑅)) |
73 | 2 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑉 = (Base‘𝑅)) |
74 | 4 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → 𝑅 ∈
∞MetSp) |
75 | 72, 73, 54, 74, 5, 6, 61, 62, 63 | imasf1obl 23642 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
76 | 75 | eqcomd 2746 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟)) |
77 | 71, 76 | eqeq12d 2756 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((𝐹 “ (◡𝐹 “ 𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
78 | 67, 77 | bitr3d 280 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐵) ∧ (𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ*)) → ((◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
79 | 78 | 2rexbidva 3230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
80 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝑉–1-1-onto→𝐵) |
81 | | f1ofn 6715 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹 Fn 𝑉) |
82 | | oveq1 7278 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑦) → (𝑧(ball‘(dist‘𝑈))𝑟) = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟)) |
83 | 82 | eqeq2d 2751 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐹‘𝑦) → (𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
84 | 83 | rexbidv 3228 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹‘𝑦) → (∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
85 | 84 | rexrn 6960 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑉 → (∃𝑧 ∈ ran 𝐹∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
86 | 80, 81, 85 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑧 ∈ ran 𝐹∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹‘𝑦)(ball‘(dist‘𝑈))𝑟))) |
87 | | forn 6689 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
88 | 80, 16, 87 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ran 𝐹 = 𝐵) |
89 | 88 | rexeqdv 3348 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑧 ∈ ran 𝐹∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑧 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
90 | 79, 86, 89 | 3bitr2d 307 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑧 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
91 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉)) |
92 | | blrn 23560 |
. . . . . . . . . . 11
⊢
(((dist‘𝑅)
↾ (𝑉 × 𝑉)) ∈
(∞Met‘𝑉) →
((◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ((◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦 ∈ 𝑉 ∃𝑟 ∈ ℝ* (◡𝐹 “ 𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟))) |
94 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (dist‘𝑈) ∈ (∞Met‘𝐵)) |
95 | | blrn 23560 |
. . . . . . . . . . 11
⊢
((dist‘𝑈)
∈ (∞Met‘𝐵)
→ (𝑥 ∈ ran
(ball‘(dist‘𝑈))
↔ ∃𝑧 ∈
𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
96 | 94, 95 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟))) |
97 | 90, 93, 96 | 3bitr4d 311 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → ((◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈)))) |
98 | 97 | pm5.32da 579 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ⊆ 𝐵 ∧ (◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran (ball‘(dist‘𝑈))))) |
99 | | f1ofo 6721 |
. . . . . . . . . 10
⊢ (𝐹:∪
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto→𝐵 → 𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–onto→𝐵) |
100 | 37, 99 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:∪ ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉)))–onto→𝐵) |
101 | 38 | elqtop2 22850 |
. . . . . . . . 9
⊢ ((ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹:∪
ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto→𝐵) → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥 ⊆ 𝐵 ∧ (◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))) |
102 | 33, 100, 101 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥 ⊆ 𝐵 ∧ (◡𝐹 “ 𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))) |
103 | | blf 23558 |
. . . . . . . . . . . 12
⊢
((dist‘𝑈)
∈ (∞Met‘𝐵)
→ (ball‘(dist‘𝑈)):(𝐵 ×
ℝ*)⟶𝒫 𝐵) |
104 | | frn 6605 |
. . . . . . . . . . . 12
⊢
((ball‘(dist‘𝑈)):(𝐵 ×
ℝ*)⟶𝒫 𝐵 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵) |
105 | 15, 103, 104 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ran
(ball‘(dist‘𝑈))
⊆ 𝒫 𝐵) |
106 | 105 | sseld 3925 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ∈ 𝒫 𝐵)) |
107 | | elpwi 4548 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵) |
108 | 106, 107 | syl6 35 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ⊆ 𝐵)) |
109 | 108 | pm4.71rd 563 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran (ball‘(dist‘𝑈))))) |
110 | 98, 102, 109 | 3bitr4d 311 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈)))) |
111 | 110 | eqrdv 2738 |
. . . . . 6
⊢ (𝜑 → (ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹) = ran (ball‘(dist‘𝑈))) |
112 | 111 | fveq2d 6775 |
. . . . 5
⊢ (𝜑 → (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹)) = (topGen‘ran
(ball‘(dist‘𝑈)))) |
113 | 47, 53, 112 | 3eqtr4d 2790 |
. . . 4
⊢ (𝜑 →
(MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (topGen‘(ran
(ball‘((dist‘𝑅)
↾ (𝑉 × 𝑉))) qTop 𝐹))) |
114 | 40, 44, 113 | 3eqtr4d 2790 |
. . 3
⊢ (𝜑 →
((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))) |
115 | 26, 31, 114 | 3eqtrd 2784 |
. 2
⊢ (𝜑 → (TopOpen‘𝑈) =
(MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))) |
116 | | eqid 2740 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
117 | | eqid 2740 |
. . 3
⊢
((dist‘𝑈)
↾ ((Base‘𝑈)
× (Base‘𝑈))) =
((dist‘𝑈) ↾
((Base‘𝑈) ×
(Base‘𝑈))) |
118 | 25, 116, 117 | isxms2 23599 |
. 2
⊢ (𝑈 ∈ ∞MetSp ↔
(((dist‘𝑈) ↾
((Base‘𝑈) ×
(Base‘𝑈))) ∈
(∞Met‘(Base‘𝑈)) ∧ (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))) |
119 | 23, 115, 118 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |