MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp11 Structured version   Visualization version   GIF version

Theorem xp11 6034
Description: The Cartesian product of nonempty classes is a one-to-one "function" of its two "arguments". In other words, two Cartesian products, at least one with nonempty factors, are equal if and only if their respective factors are equal. (Contributed by NM, 31-May-2008.)
Assertion
Ref Expression
xp11 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem xp11
StepHypRef Expression
1 xpnz 6018 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 anidm 567 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
3 neeq1 3080 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ ↔ (𝐶 × 𝐷) ≠ ∅))
43anbi2d 630 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ≠ ∅) ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅)))
52, 4syl5bbr 287 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅)))
6 eqimss 4025 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
7 ssxpb 6033 . . . . . . . 8 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
86, 7syl5ibcom 247 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ → (𝐴𝐶𝐵𝐷)))
9 eqimss2 4026 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵))
10 ssxpb 6033 . . . . . . . 8 ((𝐶 × 𝐷) ≠ ∅ → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵)))
119, 10syl5ibcom 247 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐶 × 𝐷) ≠ ∅ → (𝐶𝐴𝐷𝐵)))
128, 11anim12d 610 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅) → ((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵))))
13 an4 654 . . . . . . 7 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
14 eqss 3984 . . . . . . . 8 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
15 eqss 3984 . . . . . . . 8 (𝐵 = 𝐷 ↔ (𝐵𝐷𝐷𝐵))
1614, 15anbi12i 628 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
1713, 16bitr4i 280 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
1812, 17syl6ib 253 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅) → (𝐴 = 𝐶𝐵 = 𝐷)))
195, 18sylbid 242 . . . 4 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 = 𝐶𝐵 = 𝐷)))
2019com12 32 . . 3 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
211, 20sylbi 219 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
22 xpeq12 5582 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷))
2321, 22impbid1 227 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wne 3018  wss 3938  c0 4293   × cxp 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-dm 5567  df-rn 5568
This theorem is referenced by:  xpcan  6035  xpcan2  6036  fseqdom  9454  axcc2lem  9860  lmodfopnelem1  19672  xppss12  39122
  Copyright terms: Public domain W3C validator