MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp11 Structured version   Visualization version   GIF version

Theorem xp11 6100
Description: The Cartesian product of nonempty classes is a one-to-one "function" of its two "arguments". In other words, two Cartesian products, at least one with nonempty factors, are equal if and only if their respective factors are equal. (Contributed by NM, 31-May-2008.)
Assertion
Ref Expression
xp11 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem xp11
StepHypRef Expression
1 xpnz 6084 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 anidm 565 . . . . . 6 (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
3 neeq1 3004 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ ↔ (𝐶 × 𝐷) ≠ ∅))
43anbi2d 629 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ≠ ∅) ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅)))
52, 4bitr3id 284 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅)))
6 eqimss 3987 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷))
7 ssxpb 6099 . . . . . . . 8 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
86, 7syl5ibcom 244 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ → (𝐴𝐶𝐵𝐷)))
9 eqimss2 3988 . . . . . . . 8 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵))
10 ssxpb 6099 . . . . . . . 8 ((𝐶 × 𝐷) ≠ ∅ → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵)))
119, 10syl5ibcom 244 . . . . . . 7 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐶 × 𝐷) ≠ ∅ → (𝐶𝐴𝐷𝐵)))
128, 11anim12d 609 . . . . . 6 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅) → ((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵))))
13 an4 653 . . . . . . 7 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
14 eqss 3946 . . . . . . . 8 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
15 eqss 3946 . . . . . . . 8 (𝐵 = 𝐷 ↔ (𝐵𝐷𝐷𝐵))
1614, 15anbi12i 627 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ ((𝐴𝐶𝐶𝐴) ∧ (𝐵𝐷𝐷𝐵)))
1713, 16bitr4i 277 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝐴𝐷𝐵)) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
1812, 17syl6ib 250 . . . . 5 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅) → (𝐴 = 𝐶𝐵 = 𝐷)))
195, 18sylbid 239 . . . 4 ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 = 𝐶𝐵 = 𝐷)))
2019com12 32 . . 3 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
211, 20sylbi 216 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
22 xpeq12 5632 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷))
2321, 22impbid1 224 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wne 2941  wss 3897  c0 4267   × cxp 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-xp 5613  df-rel 5614  df-cnv 5615  df-dm 5617  df-rn 5618
This theorem is referenced by:  xpcan  6101  xpcan2  6102  fseqdom  9855  axcc2lem  10265  lmodfopnelem1  20231  xppss12  40407
  Copyright terms: Public domain W3C validator