Proof of Theorem xp11
Step | Hyp | Ref
| Expression |
1 | | xpnz 6062 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) |
2 | | anidm 565 |
. . . . . 6
⊢ (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) |
3 | | neeq1 3006 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ ↔ (𝐶 × 𝐷) ≠ ∅)) |
4 | 3 | anbi2d 629 |
. . . . . 6
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐴 × 𝐵) ≠ ∅) ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅))) |
5 | 2, 4 | bitr3id 285 |
. . . . 5
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅))) |
6 | | eqimss 3977 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) |
7 | | ssxpb 6077 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) |
8 | 6, 7 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) |
9 | | eqimss2 3978 |
. . . . . . . 8
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐶 × 𝐷) ⊆ (𝐴 × 𝐵)) |
10 | | ssxpb 6077 |
. . . . . . . 8
⊢ ((𝐶 × 𝐷) ≠ ∅ → ((𝐶 × 𝐷) ⊆ (𝐴 × 𝐵) ↔ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵))) |
11 | 9, 10 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐶 × 𝐷) ≠ ∅ → (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵))) |
12 | 8, 11 | anim12d 609 |
. . . . . 6
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅) → ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)))) |
13 | | an4 653 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵))) |
14 | | eqss 3936 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴)) |
15 | | eqss 3936 |
. . . . . . . 8
⊢ (𝐵 = 𝐷 ↔ (𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) |
16 | 14, 15 | anbi12i 627 |
. . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵))) |
17 | 13, 16 | bitr4i 277 |
. . . . . 6
⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
18 | 12, 17 | syl6ib 250 |
. . . . 5
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (((𝐴 × 𝐵) ≠ ∅ ∧ (𝐶 × 𝐷) ≠ ∅) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
19 | 5, 18 | sylbid 239 |
. . . 4
⊢ ((𝐴 × 𝐵) = (𝐶 × 𝐷) → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
20 | 19 | com12 32 |
. . 3
⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
21 | 1, 20 | sylbi 216 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
22 | | xpeq12 5614 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 × 𝐵) = (𝐶 × 𝐷)) |
23 | 21, 22 | impbid1 224 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |