Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1917 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2104 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: ralimdva 3161 ssralv 3992 zorn2lem7 10304 pwfseqlem3 10462 sup2 11977 xrsupexmnf 13085 xrinfmexpnf 13086 xrsupsslem 13087 xrinfmsslem 13088 xrub 13092 r19.29uz 15107 rexuzre 15109 caurcvg 15433 caucvg 15435 isprm5 16457 prmgaplem5 16801 prmgaplem6 16802 mrissmrid 17395 elcls3 22279 iscnp4 22459 cncls2 22469 cnntr 22471 2ndcsep 22655 dyadmbllem 24808 xrlimcnp 26163 pntlem3 26802 sigaclfu2 32134 lfuhgr2 33125 rdgssun 35593 mapdordlem2 39693 sn-sup2 40476 dffltz 40508 iunrelexp0 41348 climrec 43193 0ellimcdiv 43239 |
Copyright terms: Public domain | W3C validator |