![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1915 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: ralimdva 3173 ssralvOLD 4081 zorn2lem7 10571 pwfseqlem3 10729 sup2 12251 xrsupexmnf 13367 xrinfmexpnf 13368 xrsupsslem 13369 xrinfmsslem 13370 xrub 13374 r19.29uz 15399 rexuzre 15401 caurcvg 15725 caucvg 15727 isprm5 16754 prmgaplem5 17102 prmgaplem6 17103 mrissmrid 17699 elcls3 23112 iscnp4 23292 cncls2 23302 cnntr 23304 2ndcsep 23488 dyadmbllem 25653 xrlimcnp 27029 pntlem3 27671 sigaclfu2 34085 lfuhgr2 35086 rdgssun 37344 mapdordlem2 41594 aks6d1c1 42073 sn-sup2 42447 dffltz 42589 cantnfresb 43286 safesnsupfiub 43378 iunrelexp0 43664 climrec 45524 0ellimcdiv 45570 pgindnf 48808 |
Copyright terms: Public domain | W3C validator |