MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdv2 Structured version   Visualization version   GIF version

Theorem ralimdv2 3157
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
Hypothesis
Ref Expression
ralimdv2.1 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralimdv2 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralimdv2
StepHypRef Expression
1 ralimdv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))
21alimdv 1919 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3063 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3063 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43imtr4g 296 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2106  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ral 3063
This theorem is referenced by:  ralimdva  3161  ssralv  4001  zorn2lem7  10363  pwfseqlem3  10521  sup2  12036  xrsupexmnf  13144  xrinfmexpnf  13145  xrsupsslem  13146  xrinfmsslem  13147  xrub  13151  r19.29uz  15161  rexuzre  15163  caurcvg  15487  caucvg  15489  isprm5  16509  prmgaplem5  16853  prmgaplem6  16854  mrissmrid  17447  elcls3  22339  iscnp4  22519  cncls2  22529  cnntr  22531  2ndcsep  22715  dyadmbllem  24868  xrlimcnp  26223  pntlem3  26862  sigaclfu2  32385  lfuhgr2  33377  rdgssun  35703  mapdordlem2  39956  sn-sup2  40750  dffltz  40784  safesnsupfiub  41397  iunrelexp0  41683  climrec  43532  0ellimcdiv  43578
  Copyright terms: Public domain W3C validator