MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdv2 Structured version   Visualization version   GIF version

Theorem ralimdv2 3150
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
Hypothesis
Ref Expression
ralimdv2.1 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralimdv2 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralimdv2
StepHypRef Expression
1 ralimdv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))
21alimdv 1916 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3053 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3053 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43imtr4g 296 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-ral 3053
This theorem is referenced by:  ralimdva  3153  ssralvOLD  4036  zorn2lem7  10521  pwfseqlem3  10679  sup2  12203  xrsupexmnf  13326  xrinfmexpnf  13327  xrsupsslem  13328  xrinfmsslem  13329  xrub  13333  r19.29uz  15374  rexuzre  15376  caurcvg  15698  caucvg  15700  isprm5  16731  prmgaplem5  17080  prmgaplem6  17081  mrissmrid  17658  elcls3  23026  iscnp4  23206  cncls2  23216  cnntr  23218  2ndcsep  23402  dyadmbllem  25557  xrlimcnp  26935  pntlem3  27577  fldextrspunlsplem  33719  sigaclfu2  34157  lfuhgr2  35146  rdgssun  37401  mapdordlem2  41661  aks6d1c1  42134  sn-sup2  42481  dffltz  42624  cantnfresb  43315  safesnsupfiub  43407  iunrelexp0  43693  climrec  45599  0ellimcdiv  45645  pgindnf  49547
  Copyright terms: Public domain W3C validator