Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1922 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: ralimdva 3104 ssralv 3991 zorn2lem7 10242 pwfseqlem3 10400 sup2 11914 xrsupexmnf 13021 xrinfmexpnf 13022 xrsupsslem 13023 xrinfmsslem 13024 xrub 13028 r19.29uz 15043 rexuzre 15045 caurcvg 15369 caucvg 15371 isprm5 16393 prmgaplem5 16737 prmgaplem6 16738 mrissmrid 17331 elcls3 22215 iscnp4 22395 cncls2 22405 cnntr 22407 2ndcsep 22591 dyadmbllem 24744 xrlimcnp 26099 pntlem3 26738 sigaclfu2 32068 lfuhgr2 33059 rdgssun 35528 mapdordlem2 39630 sn-sup2 40419 dffltz 40451 iunrelexp0 41263 climrec 43098 0ellimcdiv 43144 |
Copyright terms: Public domain | W3C validator |