![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1914 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3060 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3060 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ral 3060 |
This theorem is referenced by: ralimdva 3165 ssralvOLD 4068 zorn2lem7 10540 pwfseqlem3 10698 sup2 12222 xrsupexmnf 13344 xrinfmexpnf 13345 xrsupsslem 13346 xrinfmsslem 13347 xrub 13351 r19.29uz 15386 rexuzre 15388 caurcvg 15710 caucvg 15712 isprm5 16741 prmgaplem5 17089 prmgaplem6 17090 mrissmrid 17686 elcls3 23107 iscnp4 23287 cncls2 23297 cnntr 23299 2ndcsep 23483 dyadmbllem 25648 xrlimcnp 27026 pntlem3 27668 sigaclfu2 34102 lfuhgr2 35103 rdgssun 37361 mapdordlem2 41620 aks6d1c1 42098 sn-sup2 42478 dffltz 42621 cantnfresb 43314 safesnsupfiub 43406 iunrelexp0 43692 climrec 45559 0ellimcdiv 45605 pgindnf 48947 |
Copyright terms: Public domain | W3C validator |