![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1919 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: ralimdva 3167 ssralv 4049 zorn2lem7 10493 pwfseqlem3 10651 sup2 12166 xrsupexmnf 13280 xrinfmexpnf 13281 xrsupsslem 13282 xrinfmsslem 13283 xrub 13287 r19.29uz 15293 rexuzre 15295 caurcvg 15619 caucvg 15621 isprm5 16640 prmgaplem5 16984 prmgaplem6 16985 mrissmrid 17581 elcls3 22578 iscnp4 22758 cncls2 22768 cnntr 22770 2ndcsep 22954 dyadmbllem 25107 xrlimcnp 26462 pntlem3 27101 sigaclfu2 33107 lfuhgr2 34097 rdgssun 36247 mapdordlem2 40496 sn-sup2 41338 dffltz 41372 cantnfresb 42059 safesnsupfiub 42152 iunrelexp0 42438 climrec 44305 0ellimcdiv 44351 pgindnf 47714 |
Copyright terms: Public domain | W3C validator |