MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdv2 Structured version   Visualization version   GIF version

Theorem ralimdv2 3157
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
Hypothesis
Ref Expression
ralimdv2.1 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralimdv2 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralimdv2
StepHypRef Expression
1 ralimdv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))
21alimdv 1917 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3063 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3063 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43imtr4g 296 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2104  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911
This theorem depends on definitions:  df-bi 206  df-ral 3063
This theorem is referenced by:  ralimdva  3161  ssralv  3992  zorn2lem7  10304  pwfseqlem3  10462  sup2  11977  xrsupexmnf  13085  xrinfmexpnf  13086  xrsupsslem  13087  xrinfmsslem  13088  xrub  13092  r19.29uz  15107  rexuzre  15109  caurcvg  15433  caucvg  15435  isprm5  16457  prmgaplem5  16801  prmgaplem6  16802  mrissmrid  17395  elcls3  22279  iscnp4  22459  cncls2  22469  cnntr  22471  2ndcsep  22655  dyadmbllem  24808  xrlimcnp  26163  pntlem3  26802  sigaclfu2  32134  lfuhgr2  33125  rdgssun  35593  mapdordlem2  39693  sn-sup2  40476  dffltz  40508  iunrelexp0  41348  climrec  43193  0ellimcdiv  43239
  Copyright terms: Public domain W3C validator