| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | alimdv 1917 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: ralimdva 3144 ssralvOLD 4002 zorn2lem7 10393 pwfseqlem3 10551 sup2 12078 xrsupexmnf 13204 xrinfmexpnf 13205 xrsupsslem 13206 xrinfmsslem 13207 xrub 13211 r19.29uz 15258 rexuzre 15260 caurcvg 15584 caucvg 15586 isprm5 16618 prmgaplem5 16967 prmgaplem6 16968 mrissmrid 17547 elcls3 22998 iscnp4 23178 cncls2 23188 cnntr 23190 2ndcsep 23374 dyadmbllem 25527 xrlimcnp 26905 pntlem3 27547 fldextrspunlsplem 33686 sigaclfu2 34134 lfuhgr2 35163 rdgssun 37420 mapdordlem2 41684 aks6d1c1 42157 sn-sup2 42532 dffltz 42675 cantnfresb 43365 safesnsupfiub 43457 iunrelexp0 43743 climrec 45651 0ellimcdiv 45695 pgindnf 49756 |
| Copyright terms: Public domain | W3C validator |