| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | alimdv 1916 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimdva 3141 ssralvOLD 4008 zorn2lem7 10396 pwfseqlem3 10554 sup2 12081 xrsupexmnf 13207 xrinfmexpnf 13208 xrsupsslem 13209 xrinfmsslem 13210 xrub 13214 r19.29uz 15258 rexuzre 15260 caurcvg 15584 caucvg 15586 isprm5 16618 prmgaplem5 16967 prmgaplem6 16968 mrissmrid 17547 elcls3 22968 iscnp4 23148 cncls2 23158 cnntr 23160 2ndcsep 23344 dyadmbllem 25498 xrlimcnp 26876 pntlem3 27518 fldextrspunlsplem 33640 sigaclfu2 34088 lfuhgr2 35092 rdgssun 37352 mapdordlem2 41616 aks6d1c1 42089 sn-sup2 42464 dffltz 42607 cantnfresb 43297 safesnsupfiub 43389 iunrelexp0 43675 climrec 45584 0ellimcdiv 45630 pgindnf 49701 |
| Copyright terms: Public domain | W3C validator |