| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | alimdv 1916 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ral 3053 |
| This theorem is referenced by: ralimdva 3153 ssralvOLD 4036 zorn2lem7 10521 pwfseqlem3 10679 sup2 12203 xrsupexmnf 13326 xrinfmexpnf 13327 xrsupsslem 13328 xrinfmsslem 13329 xrub 13333 r19.29uz 15374 rexuzre 15376 caurcvg 15698 caucvg 15700 isprm5 16731 prmgaplem5 17080 prmgaplem6 17081 mrissmrid 17658 elcls3 23026 iscnp4 23206 cncls2 23216 cnntr 23218 2ndcsep 23402 dyadmbllem 25557 xrlimcnp 26935 pntlem3 27577 fldextrspunlsplem 33719 sigaclfu2 34157 lfuhgr2 35146 rdgssun 37401 mapdordlem2 41661 aks6d1c1 42134 sn-sup2 42481 dffltz 42624 cantnfresb 43315 safesnsupfiub 43407 iunrelexp0 43693 climrec 45599 0ellimcdiv 45645 pgindnf 49547 |
| Copyright terms: Public domain | W3C validator |