| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | alimdv 1916 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimdva 3145 ssralvOLD 4016 zorn2lem7 10431 pwfseqlem3 10589 sup2 12115 xrsupexmnf 13241 xrinfmexpnf 13242 xrsupsslem 13243 xrinfmsslem 13244 xrub 13248 r19.29uz 15293 rexuzre 15295 caurcvg 15619 caucvg 15621 isprm5 16653 prmgaplem5 17002 prmgaplem6 17003 mrissmrid 17578 elcls3 22946 iscnp4 23126 cncls2 23136 cnntr 23138 2ndcsep 23322 dyadmbllem 25476 xrlimcnp 26854 pntlem3 27496 fldextrspunlsplem 33641 sigaclfu2 34084 lfuhgr2 35079 rdgssun 37339 mapdordlem2 41604 aks6d1c1 42077 sn-sup2 42452 dffltz 42595 cantnfresb 43286 safesnsupfiub 43378 iunrelexp0 43664 climrec 45574 0ellimcdiv 45620 pgindnf 49678 |
| Copyright terms: Public domain | W3C validator |