![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1919 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: ralimdva 3167 ssralv 4050 zorn2lem7 10499 pwfseqlem3 10657 sup2 12172 xrsupexmnf 13286 xrinfmexpnf 13287 xrsupsslem 13288 xrinfmsslem 13289 xrub 13293 r19.29uz 15299 rexuzre 15301 caurcvg 15625 caucvg 15627 isprm5 16646 prmgaplem5 16990 prmgaplem6 16991 mrissmrid 17587 elcls3 22594 iscnp4 22774 cncls2 22784 cnntr 22786 2ndcsep 22970 dyadmbllem 25123 xrlimcnp 26480 pntlem3 27119 sigaclfu2 33188 lfuhgr2 34178 rdgssun 36345 mapdordlem2 40594 sn-sup2 41424 dffltz 41458 cantnfresb 42156 safesnsupfiub 42249 iunrelexp0 42535 climrec 44398 0ellimcdiv 44444 pgindnf 47839 |
Copyright terms: Public domain | W3C validator |