| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | alimdv 1916 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimdva 3145 ssralvOLD 4019 zorn2lem7 10455 pwfseqlem3 10613 sup2 12139 xrsupexmnf 13265 xrinfmexpnf 13266 xrsupsslem 13267 xrinfmsslem 13268 xrub 13272 r19.29uz 15317 rexuzre 15319 caurcvg 15643 caucvg 15645 isprm5 16677 prmgaplem5 17026 prmgaplem6 17027 mrissmrid 17602 elcls3 22970 iscnp4 23150 cncls2 23160 cnntr 23162 2ndcsep 23346 dyadmbllem 25500 xrlimcnp 26878 pntlem3 27520 fldextrspunlsplem 33668 sigaclfu2 34111 lfuhgr2 35106 rdgssun 37366 mapdordlem2 41631 aks6d1c1 42104 sn-sup2 42479 dffltz 42622 cantnfresb 43313 safesnsupfiub 43405 iunrelexp0 43691 climrec 45601 0ellimcdiv 45647 pgindnf 49702 |
| Copyright terms: Public domain | W3C validator |