Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimdv2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | alimdv 1919 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: ralimdva 3161 ssralv 4001 zorn2lem7 10363 pwfseqlem3 10521 sup2 12036 xrsupexmnf 13144 xrinfmexpnf 13145 xrsupsslem 13146 xrinfmsslem 13147 xrub 13151 r19.29uz 15161 rexuzre 15163 caurcvg 15487 caucvg 15489 isprm5 16509 prmgaplem5 16853 prmgaplem6 16854 mrissmrid 17447 elcls3 22339 iscnp4 22519 cncls2 22529 cnntr 22531 2ndcsep 22715 dyadmbllem 24868 xrlimcnp 26223 pntlem3 26862 sigaclfu2 32385 lfuhgr2 33377 rdgssun 35703 mapdordlem2 39956 sn-sup2 40750 dffltz 40784 safesnsupfiub 41397 iunrelexp0 41683 climrec 43532 0ellimcdiv 43578 |
Copyright terms: Public domain | W3C validator |