Home | Metamath
Proof Explorer Theorem List (p. 133 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ge0addcl 13201 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 + 𝐵) ∈ (0[,)+∞)) | ||
Theorem | ge0mulcl 13202 | The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 · 𝐵) ∈ (0[,)+∞)) | ||
Theorem | ge0xaddcl 13203 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | ge0xmulcl 13204 | The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 ·e 𝐵) ∈ (0[,]+∞)) | ||
Theorem | lbicc2 13205 | The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | ||
Theorem | ubicc2 13206 | The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | ||
Theorem | elicc01 13207 | Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.) |
⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) | ||
Theorem | elunitrn 13208 | The closed unit interval is a subset of the set of the real numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ) | ||
Theorem | elunitcn 13209 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℂ) | ||
Theorem | 0elunit 13210 | Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ 0 ∈ (0[,]1) | ||
Theorem | 1elunit 13211 | One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ 1 ∈ (0[,]1) | ||
Theorem | iooneg 13212 | Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) | ||
Theorem | iccneg 13213 | Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴))) | ||
Theorem | icoshft 13214 | A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))) | ||
Theorem | icoshftf1o 13215* | Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) | ||
Theorem | icoun 13216 | The union of two adjacent left-closed right-open real intervals is a left-closed right-open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) | ||
Theorem | icodisj 13217 | Adjacent left-closed right-open real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) | ||
Theorem | ioounsn 13218 | The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) | ||
Theorem | snunioo 13219 | The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵)) | ||
Theorem | snunico 13220 | The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵)) | ||
Theorem | snunioc 13221 | The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵)) | ||
Theorem | prunioo 13222 | The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | ||
Theorem | ioodisj 13223 | If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) | ||
Theorem | ioojoin 13224 | Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶)) | ||
Theorem | difreicc 13225 | The class difference of ℝ and a closed interval. (Contributed by FL, 18-Jun-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) | ||
Theorem | iccsplit 13226 | Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))) | ||
Theorem | iccshftr 13227 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) | ||
Theorem | iccshftri 13228 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) | ||
Theorem | iccshftl 13229 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 − 𝑅) ∈ (𝐶[,]𝐷))) | ||
Theorem | iccshftli 13230 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 − 𝑅) ∈ (𝐶[,]𝐷)) | ||
Theorem | iccdil 13231 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) | ||
Theorem | iccdili 13232 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) | ||
Theorem | icccntr 13233 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) | ||
Theorem | icccntri 13234 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)) | ||
Theorem | divelunit 13235 | A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴 ≤ 𝐵)) | ||
Theorem | lincmb01cmp 13236 | A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵)) | ||
Theorem | iccf1o 13237* | Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ ◡𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦 − 𝐴) / (𝐵 − 𝐴))))) | ||
Theorem | iccen 13238 | Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ≈ (𝐴[,]𝐵)) | ||
Theorem | xov1plusxeqvd 13239 | A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ -1) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1))) | ||
Theorem | unitssre 13240 | (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (0[,]1) ⊆ ℝ | ||
Theorem | unitsscn 13241 | The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ (0[,]1) ⊆ ℂ | ||
Theorem | supicc 13242 | Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) | ||
Theorem | supiccub 13243 | The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | supicclub 13244* | The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) | ||
Theorem | supicclub2 13245* | The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) | ||
Theorem | zltaddlt1le 13246 | The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) | ||
Theorem | xnn0xrge0 13247 | An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ (0[,]+∞)) | ||
Syntax | cfz 13248 |
Extend class notation to include the notation for a contiguous finite set
of integers. Read "𝑀...𝑁 " as "the set of integers
from 𝑀 to
𝑁 inclusive".
This symbol is also used informally in some comments to denote an ellipsis, e.g., 𝐴 + 𝐴↑2 + ... + 𝐴↑(𝑁 − 1). |
class ... | ||
Definition | df-fz 13249* | Define an operation that produces a finite set of sequential integers. Read "𝑀...𝑁 " as "the set of integers from 𝑀 to 𝑁 inclusive". See fzval 13250 for its value and additional comments. (Contributed by NM, 6-Sep-2005.) |
⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | ||
Theorem | fzval 13250* | The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) | ||
Theorem | fzval2 13251 | An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) | ||
Theorem | fzf 13252 | Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | ||
Theorem | elfz1 13253 | Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfz 13254 | Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfz2 13255 | Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfzd 13256 | Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝐾) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | ||
Theorem | elfz5 13257 | Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) | ||
Theorem | elfz4 13258 | Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
Theorem | elfzuzb 13259 | Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | ||
Theorem | eluzfz 13260 | Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (𝑀...𝑁)) | ||
Theorem | elfzuz 13261 | A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
Theorem | elfzuz3 13262 | Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
Theorem | elfzel2 13263 | Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | ||
Theorem | elfzel1 13264 | Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | ||
Theorem | elfzelz 13265 | A member of a finite set of sequential integers is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | ||
Theorem | elfzelzd 13266 | A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → 𝐾 ∈ ℤ) | ||
Theorem | fzssz 13267 | A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝑀...𝑁) ⊆ ℤ | ||
Theorem | elfzle1 13268 | A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) | ||
Theorem | elfzle2 13269 | A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | ||
Theorem | elfzuz2 13270 | Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
Theorem | elfzle3 13271 | Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑁) | ||
Theorem | eluzfz1 13272 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | ||
Theorem | eluzfz2 13273 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | ||
Theorem | eluzfz2b 13274 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (𝑀...𝑁)) | ||
Theorem | elfz3 13275 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | ||
Theorem | elfz1eq 13276 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) | ||
Theorem | elfzubelfz 13277 | If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁)) | ||
Theorem | peano2fzr 13278 | A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.) |
⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
Theorem | fzn0 13279 | Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | ||
Theorem | fz0 13280 | A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) | ||
Theorem | fzn 13281 | A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | ||
Theorem | fzen 13282 | A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | ||
Theorem | fz1n 13283 | A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) | ||
Theorem | 0nelfz1 13284 | 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.) |
⊢ 0 ∉ (1...𝑁) | ||
Theorem | 0fz1 13285 | Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0)) | ||
Theorem | fz10 13286 | There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (1...0) = ∅ | ||
Theorem | uzsubsubfz 13287 | Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
⊢ ((𝐿 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 𝑀)) ∈ (𝑀...𝑁)) | ||
Theorem | uzsubsubfz1 13288 | Membership of an integer greater than L decreased by ( L - 1 ) in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
⊢ ((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁)) | ||
Theorem | ige3m2fz 13289 | Membership of an integer greater than 2 decreased by 2 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ (1...𝑁)) | ||
Theorem | fzsplit2 13290 | Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ (((𝐾 + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
Theorem | fzsplit 13291 | Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
Theorem | fzdisj 13292 | Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) | ||
Theorem | fz01en 13293 | 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) | ||
Theorem | elfznn 13294 | A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) | ||
Theorem | elfz1end 13295 | A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) | ||
Theorem | fz1ssnn 13296 | A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (1...𝐴) ⊆ ℕ | ||
Theorem | fznn0sub 13297 | Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | ||
Theorem | fzmmmeqm 13298 | Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.) |
⊢ (𝑀 ∈ (𝐿...𝑁) → ((𝑁 − 𝐿) − (𝑀 − 𝐿)) = (𝑁 − 𝑀)) | ||
Theorem | fzaddel 13299 | Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | ||
Theorem | fzadd2 13300 | Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |