| Metamath
Proof Explorer Theorem List (p. 133 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xaddrid 13201 | Extended real version of addrid 11354. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | ||
| Theorem | xaddlid 13202 | Extended real version of addlid 11357. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) | ||
| Theorem | xaddridd 13203 | 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) | ||
| Theorem | xnn0lem1lt 13204 | Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | xnn0lenn0nn0 13205 | An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
| ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) | ||
| Theorem | xnn0le2is012 13206 | An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.) |
| ⊢ ((𝑁 ∈ ℕ0* ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
| Theorem | xnn0xadd0 13207 | The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.) |
| ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | ||
| Theorem | xnegdi 13208 | Extended real version of negdi 11479. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵)) | ||
| Theorem | xaddass 13209 | Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 13210, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xaddass2 13210 | Associativity of extended real addition. See xaddass 13209 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xpncan 13211 | Extended real version of pncan 11427. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴) | ||
| Theorem | xnpcan 13212 | Extended real version of npcan 11430. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
| Theorem | xleadd1a 13213 | Extended real version of leadd1 11646; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | ||
| Theorem | xleadd2a 13214 | Commuted form of xleadd1a 13213. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) | ||
| Theorem | xleadd1 13215 | Weakened version of xleadd1a 13213 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) | ||
| Theorem | xltadd1 13216 | Extended real version of ltadd1 11645. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) | ||
| Theorem | xltadd2 13217 | Extended real version of ltadd2 11278. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 +𝑒 𝐴) < (𝐶 +𝑒 𝐵))) | ||
| Theorem | xaddge0 13218 | The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) | ||
| Theorem | xle2add 13219 | Extended real version of le2add 11660. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | ||
| Theorem | xlt2add 13220 | Extended real version of lt2add 11663. Note that ltleadd 11661, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))) | ||
| Theorem | xsubge0 13221 | Extended real version of subge0 11691. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | xposdif 13222 | Extended real version of posdif 11671. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) | ||
| Theorem | xlesubadd 13223 | Under certain conditions, the conclusion of lesubadd 11650 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵))) | ||
| Theorem | xmullem 13224 | Lemma for rexmul 13231. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) | ||
| Theorem | xmullem2 13225 | Lemma for xmulneg1 13229. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | ||
| Theorem | xmulcom 13226 | Extended real multiplication is commutative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = (𝐵 ·e 𝐴)) | ||
| Theorem | xmul01 13227 | Extended real version of mul01 11353. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) | ||
| Theorem | xmul02 13228 | Extended real version of mul02 11352. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = 0) | ||
| Theorem | xmulneg1 13229 | Extended real version of mulneg1 11614. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
| Theorem | xmulneg2 13230 | Extended real version of mulneg2 11615. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e -𝑒𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
| Theorem | rexmul 13231 | The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | xmulf 13232 | The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ·e :(ℝ* × ℝ*)⟶ℝ* | ||
| Theorem | xmulcl 13233 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
| Theorem | xmulpnf1 13234 | Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | ||
| Theorem | xmulpnf2 13235 | Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) | ||
| Theorem | xmulmnf1 13236 | Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) | ||
| Theorem | xmulmnf2 13237 | Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (-∞ ·e 𝐴) = -∞) | ||
| Theorem | xmulpnf1n 13238 | Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) | ||
| Theorem | xmulrid 13239 | Extended real version of mulrid 11172. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) | ||
| Theorem | xmullid 13240 | Extended real version of mullid 11173. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | ||
| Theorem | xmulm1 13241 | Extended real version of mulm1 11619. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (-1 ·e 𝐴) = -𝑒𝐴) | ||
| Theorem | xmulasslem2 13242 | Lemma for xmulass 13247. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) | ||
| Theorem | xmulgt0 13243 | Extended real version of mulgt0 11251. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵)) | ||
| Theorem | xmulge0 13244 | Extended real version of mulge0 11696. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵)) | ||
| Theorem | xmulasslem 13245* | Lemma for xmulass 13247. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝑥 = 𝐷 → (𝜓 ↔ 𝑋 = 𝑌)) & ⊢ (𝑥 = -𝑒𝐷 → (𝜓 ↔ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ ℝ*) & ⊢ (𝜑 → 𝑌 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓) & ⊢ (𝜑 → (𝑥 = 0 → 𝜓)) & ⊢ (𝜑 → 𝐸 = -𝑒𝑋) & ⊢ (𝜑 → 𝐹 = -𝑒𝑌) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | xmulasslem3 13246 | Lemma for xmulass 13247. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
| Theorem | xmulass 13247 | Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 13209 which has to avoid the "undefined" combinations +∞ +𝑒 -∞ and -∞ +𝑒 +∞. The equivalent "undefined" expression here would be 0 ·e +∞, but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
| Theorem | xlemul1a 13248 | Extended real version of lemul1a 12036. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) | ||
| Theorem | xlemul2a 13249 | Extended real version of lemul2a 12037. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵)) | ||
| Theorem | xlemul1 13250 | Extended real version of lemul1 12034. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) | ||
| Theorem | xlemul2 13251 | Extended real version of lemul2 12035. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵))) | ||
| Theorem | xltmul1 13252 | Extended real version of ltmul1 12032. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶))) | ||
| Theorem | xltmul2 13253 | Extended real version of ltmul2 12033. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐶 ·e 𝐴) < (𝐶 ·e 𝐵))) | ||
| Theorem | xadddilem 13254 | Lemma for xadddi 13255. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddi 13255 | Distributive property for extended real addition and multiplication. Like xaddass 13209, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddir 13256 | Commuted version of xadddi 13255. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xadddi2 13257 | The assumption that the multiplier be real in xadddi 13255 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddi2r 13258 | Commuted version of xadddi2 13257. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | x2times 13259 | Extended real version of 2times 12317. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) | ||
| Theorem | xnegcld 13260 | Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ*) | ||
| Theorem | xaddcld 13261 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xmulcld 13262 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
| Theorem | xadd4d 13263 | Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11403. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
| ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) & ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) & ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) & ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
| Theorem | xnn0add4d 13264 | Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 13263. (Contributed by AV, 12-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0*) & ⊢ (𝜑 → 𝐵 ∈ ℕ0*) & ⊢ (𝜑 → 𝐶 ∈ ℕ0*) & ⊢ (𝜑 → 𝐷 ∈ ℕ0*) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
| Theorem | xrsupexmnf 13265* | Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
| ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) | ||
| Theorem | xrinfmexpnf 13266* | Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))) | ||
| Theorem | xrsupsslem 13267* | Lemma for xrsupss 13269. (Contributed by NM, 25-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | xrinfmsslem 13268* | Lemma for xrinfmss 13270. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | xrsupss 13269* | Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | xrinfmss 13270* | Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | xrinfmss2 13271* | Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) | ||
| Theorem | xrub 13272* | By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦) ↔ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) | ||
| Theorem | supxr 13273* | The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.) |
| ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | ||
| Theorem | supxr2 13274* | The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) |
| ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | ||
| Theorem | supxrcl 13275 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | supxrun 13276 | The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴 ∪ 𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < )) | ||
| Theorem | supxrmnf 13277 | Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrpnf 13278 | The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) | ||
| Theorem | supxrunb1 13279* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
| Theorem | supxrunb2 13280* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
| Theorem | supxrbnd1 13281* | The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
| Theorem | supxrbnd2 13282* | The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
| Theorem | xrsup0 13283 | The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ sup(∅, ℝ*, < ) = -∞ | ||
| Theorem | supxrub 13284 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrlub 13285* | The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < sup(𝐴, ℝ*, < ) ↔ ∃𝑥 ∈ 𝐴 𝐵 < 𝑥)) | ||
| Theorem | supxrleub 13286* | The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵)) | ||
| Theorem | supxrre 13287* | The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < )) | ||
| Theorem | supxrbnd 13288 | The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ) | ||
| Theorem | supxrgtmnf 13289 | The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrre1 13290 | The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
| Theorem | supxrre2 13291 | The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) | ||
| Theorem | supxrss 13292 | Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) | ||
| Theorem | xrsupssd 13293 | Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) | ||
| Theorem | infxrcl 13294 | The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by AV, 5-Sep-2020.) |
| ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | infxrlb 13295 | A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) | ||
| Theorem | infxrgelb 13296* | The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
| Theorem | infxrre 13297* | The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < )) | ||
| Theorem | infxrmnf 13298 | The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → inf(𝐴, ℝ*, < ) = -∞) | ||
| Theorem | xrinf0 13299 | The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
| ⊢ inf(∅, ℝ*, < ) = +∞ | ||
| Theorem | infxrss 13300 | Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |