HomeHome Metamath Proof Explorer
Theorem List (p. 133 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremge0addcl 13201 The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.)
((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 + 𝐵) ∈ (0[,)+∞))
 
Theoremge0mulcl 13202 The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.)
((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 · 𝐵) ∈ (0[,)+∞))
 
Theoremge0xaddcl 13203 The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))
 
Theoremge0xmulcl 13204 The nonnegative extended reals are closed under multiplication. (Contributed by Mario Carneiro, 26-Aug-2015.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 ·e 𝐵) ∈ (0[,]+∞))
 
Theoremlbicc2 13205 The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
 
Theoremubicc2 13206 The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
 
Theoremelicc01 13207 Membership in the closed real interval between 0 and 1, also called the closed unit interval. (Contributed by AV, 20-Aug-2022.)
(𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
 
Theoremelunitrn 13208 The closed unit interval is a subset of the set of the real numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.)
(𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
 
Theoremelunitcn 13209 The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 21-Dec-2016.)
(𝐴 ∈ (0[,]1) → 𝐴 ∈ ℂ)
 
Theorem0elunit 13210 Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.)
0 ∈ (0[,]1)
 
Theorem1elunit 13211 One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.)
1 ∈ (0[,]1)
 
Theoremiooneg 13212 Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))
 
Theoremiccneg 13213 Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))
 
Theoremicoshft 13214 A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
 
Theoremicoshftf1o 13215* Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
 
Theoremicoun 13216 The union of two adjacent left-closed right-open real intervals is a left-closed right-open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶))
 
Theoremicodisj 13217 Adjacent left-closed right-open real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
 
Theoremioounsn 13218 The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
 
Theoremsnunioo 13219 The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
 
Theoremsnunico 13220 The closure of the open end of a right-open real interval. (Contributed by Mario Carneiro, 16-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
 
Theoremsnunioc 13221 The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
 
Theoremprunioo 13222 The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
 
Theoremioodisj 13223 If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
 
Theoremioojoin 13224 Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
 
Theoremdifreicc 13225 The class difference of and a closed interval. (Contributed by FL, 18-Jun-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
 
Theoremiccsplit 13226 Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))
 
Theoremiccshftr 13227 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 + 𝑅) = 𝐶    &   (𝐵 + 𝑅) = 𝐷       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
 
Theoremiccshftri 13228 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝑅 ∈ ℝ    &   (𝐴 + 𝑅) = 𝐶    &   (𝐵 + 𝑅) = 𝐷       (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))
 
Theoremiccshftl 13229 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴𝑅) = 𝐶    &   (𝐵𝑅) = 𝐷       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))
 
Theoremiccshftli 13230 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝑅 ∈ ℝ    &   (𝐴𝑅) = 𝐶    &   (𝐵𝑅) = 𝐷       (𝑋 ∈ (𝐴[,]𝐵) → (𝑋𝑅) ∈ (𝐶[,]𝐷))
 
Theoremiccdil 13231 Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 · 𝑅) = 𝐶    &   (𝐵 · 𝑅) = 𝐷       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))
 
Theoremiccdili 13232 Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝑅 ∈ ℝ+    &   (𝐴 · 𝑅) = 𝐶    &   (𝐵 · 𝑅) = 𝐷       (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))
 
Theoremicccntr 13233 Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 / 𝑅) = 𝐶    &   (𝐵 / 𝑅) = 𝐷       (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))
 
Theoremicccntri 13234 Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝑅 ∈ ℝ+    &   (𝐴 / 𝑅) = 𝐶    &   (𝐵 / 𝑅) = 𝐷       (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))
 
Theoremdivelunit 13235 A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴𝐵))
 
Theoremlincmb01cmp 13236 A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))
 
Theoremiccf1o 13237* Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.)
𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
 
Theoremiccen 13238 Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ≈ (𝐴[,]𝐵))
 
Theoremxov1plusxeqvd 13239 A complex number 𝑋 is positive real iff 𝑋 / (1 + 𝑋) is in (0(,)1). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 ≠ -1)       (𝜑 → (𝑋 ∈ ℝ+ ↔ (𝑋 / (1 + 𝑋)) ∈ (0(,)1)))
 
Theoremunitssre 13240 (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.)
(0[,]1) ⊆ ℝ
 
Theoremunitsscn 13241 The closed unit interval is a subset of the set of the complex numbers. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.)
(0[,]1) ⊆ ℂ
 
Theoremsupicc 13242 Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑𝐴 ≠ ∅)       (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
 
Theoremsupiccub 13243 The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑𝐴 ≠ ∅)    &   (𝜑𝐷𝐴)       (𝜑𝐷 ≤ sup(𝐴, ℝ, < ))
 
Theoremsupicclub 13244* The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑𝐴 ≠ ∅)    &   (𝜑𝐷𝐴)       (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
 
Theoremsupicclub2 13245* The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑𝐴 ≠ ∅)    &   (𝜑𝐷𝐴)    &   ((𝜑𝑧𝐴) → 𝑧𝐷)       (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
 
Theoremzltaddlt1le 13246 The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁))
 
Theoremxnn0xrge0 13247 An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ ℕ0*𝐴 ∈ (0[,]+∞))
 
5.5.5  Finite intervals of integers
 
Syntaxcfz 13248 Extend class notation to include the notation for a contiguous finite set of integers. Read "𝑀...𝑁 " as "the set of integers from 𝑀 to 𝑁 inclusive".

This symbol is also used informally in some comments to denote an ellipsis, e.g., 𝐴 + 𝐴↑2 + ... + 𝐴↑(𝑁 − 1).

class ...
 
Definitiondf-fz 13249* Define an operation that produces a finite set of sequential integers. Read "𝑀...𝑁 " as "the set of integers from 𝑀 to 𝑁 inclusive". See fzval 13250 for its value and additional comments. (Contributed by NM, 6-Sep-2005.)
... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
 
Theoremfzval 13250* The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where k means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
 
Theoremfzval2 13251 An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
 
Theoremfzf 13252 Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
...:(ℤ × ℤ)⟶𝒫 ℤ
 
Theoremelfz1 13253 Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
 
Theoremelfz 13254 Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
 
Theoremelfz2 13255 Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
 
Theoremelfzd 13256 Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀𝐾)    &   (𝜑𝐾𝑁)       (𝜑𝐾 ∈ (𝑀...𝑁))
 
Theoremelfz5 13257 Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
 
Theoremelfz4 13258 Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremelfzuzb 13259 Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
 
Theoremeluzfz 13260 Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremelfzuz 13261 A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
 
Theoremelfzuz3 13262 Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
 
Theoremelfzel2 13263 Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
 
Theoremelfzel1 13264 Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
 
Theoremelfzelz 13265 A member of a finite set of sequential integers is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
 
Theoremelfzelzd 13266 A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐾 ∈ (𝑀...𝑁))       (𝜑𝐾 ∈ ℤ)
 
Theoremfzssz 13267 A finite sequence of integers is a set of integers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝑀...𝑁) ⊆ ℤ
 
Theoremelfzle1 13268 A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
 
Theoremelfzle2 13269 A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
 
Theoremelfzuz2 13270 Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
 
Theoremelfzle3 13271 Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑀𝑁)
 
Theoremeluzfz1 13272 Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
 
Theoremeluzfz2 13273 Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
 
Theoremeluzfz2b 13274 Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (𝑀...𝑁))
 
Theoremelfz3 13275 Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.)
(𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁))
 
Theoremelfz1eq 13276 Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
(𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
 
Theoremelfzubelfz 13277 If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁))
 
Theorempeano2fzr 13278 A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremfzn0 13279 Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
 
Theoremfz0 13280 A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.)
((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅)
 
Theoremfzn 13281 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
 
Theoremfzen 13282 A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
 
Theoremfz1n 13283 A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0))
 
Theorem0nelfz1 13284 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.)
0 ∉ (1...𝑁)
 
Theorem0fz1 13285 Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0))
 
Theoremfz10 13286 There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(1...0) = ∅
 
Theoremuzsubsubfz 13287 Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
 
Theoremuzsubsubfz1 13288 Membership of an integer greater than L decreased by ( L - 1 ) in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁))
 
Theoremige3m2fz 13289 Membership of an integer greater than 2 decreased by 2 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
 
Theoremfzsplit2 13290 Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
(((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
 
Theoremfzsplit 13291 Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.)
(𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
 
Theoremfzdisj 13292 Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
 
Theoremfz01en 13293 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.)
(𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
 
Theoremelfznn 13294 A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.)
(𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
 
Theoremelfz1end 13295 A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
 
Theoremfz1ssnn 13296 A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.)
(1...𝐴) ⊆ ℕ
 
Theoremfznn0sub 13297 Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)
 
Theoremfzmmmeqm 13298 Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.)
(𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
 
Theoremfzaddel 13299 Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
 
Theoremfzadd2 13300 Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >