![]() |
Metamath
Proof Explorer Theorem List (p. 133 of 444) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28374) |
![]() (28375-29897) |
![]() (29898-44365) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fsuppmapnn0ub 13201* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) | ||
Theorem | fsuppmapnn0fz 13202* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.) |
⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) | ||
Theorem | mptnn0fsupp 13203* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
Theorem | mptnn0fsuppd 13204* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.) |
⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
Theorem | mptnn0fsuppr 13205* | A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.) |
⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | ||
Theorem | f13idfv 13206 | A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
⊢ 𝐴 = (0...2) ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) | ||
Syntax | cseq 13207 | Extend class notation with recursive sequence builder. |
class seq𝑀( + , 𝐹) | ||
Definition | df-seq 13208* |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seq1 13220
and seqp1 13222.
Typically, those are the main theorems that would be used in practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 14731), by climdm 14733 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the rec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of rec is exactly the sequence we want, and we just extract the range (restricted to omega) and throw away the domain. This definition has its roots in a series of theorems from om2uz0i 13153 through om2uzf1oi 13159, originally proved by Raph Levien for use with df-exp 13268 and later generalized for arbitrary recursive sequences. Definition df-sum 14865 extracts the summation values from partial (finite) and complete (infinite) series. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 4-Sep-2013.) |
⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | ||
Theorem | seqex 13209 | Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ seq𝑀( + , 𝐹) ∈ V | ||
Theorem | seqeq1 13210 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) | ||
Theorem | seqeq2 13211 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
Theorem | seqeq3 13212 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seqeq1d 13213 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | ||
Theorem | seqeq2d 13214 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) | ||
Theorem | seqeq3d 13215 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | ||
Theorem | seqeq123d 13216 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) | ||
Theorem | nfseq 13217 | Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | ||
Theorem | seqval 13218* | Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) ⇒ ⊢ seq𝑀( + , 𝐹) = ran 𝑅 | ||
Theorem | seqfn 13219 | The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | ||
Theorem | seq1 13220 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
Theorem | seq1i 13221 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝑀 ∈ ℤ & ⊢ (𝜑 → (𝐹‘𝑀) = 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝐴) | ||
Theorem | seqp1 13222 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
Theorem | seqexw 13223 | Weak version of seqex 13209 that holds without ax-rep 5075. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ + ∈ V & ⊢ 𝑀 ∈ ℤ ⇒ ⊢ seq𝑀( + , 𝐹) ∈ V | ||
Theorem | seqp1i 13224 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 ∈ 𝑍 & ⊢ 𝐾 = (𝑁 + 1) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝐵) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵)) | ||
Theorem | seqm1 13225 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
Theorem | seqcl2 13226* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶) | ||
Theorem | seqf2 13227* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) | ||
Theorem | seqcl 13228* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
Theorem | seqf 13229* | Range of the recursive sequence builder (special case of seqf2 13227). (Contributed by Mario Carneiro, 24-Jun-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) | ||
Theorem | seqfveq2 13230* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
Theorem | seqfeq2 13231* | Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) | ||
Theorem | seqfveq 13232* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seqfeq 13233* | Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
Theorem | seqshft2 13234* | Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
Theorem | seqres 13235 | Restricting its characteristic function to (ℤ≥‘𝑀) does not affect the seq function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝐹 ↾ (ℤ≥‘𝑀))) = seq𝑀( + , 𝐹)) | ||
Theorem | serf 13236* | An infinite series of complex terms is a function from ℕ to ℂ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) | ||
Theorem | serfre 13237* | An infinite series of real numbers is a function from ℕ to ℝ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) | ||
Theorem | monoord 13238* | Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
Theorem | monoord2 13239* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
Theorem | sermono 13240* | The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.) |
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | seqsplit 13241* | Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seq1p 13242* | Removing the first term from a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) | ||
Theorem | seqcaopr3 13243* | Lemma for seqcaopr2 13244. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaopr2 13244* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqcaopr 13245* | The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqf1olem2a 13246* | Lemma for seqf1o 13249. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) | ||
Theorem | seqf1olem1 13247* | Lemma for seqf1o 13249. (Contributed by Mario Carneiro, 26-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) & ⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝐶) & ⊢ 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)))) & ⊢ 𝐾 = (◡𝐹‘(𝑁 + 1)) ⇒ ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | ||
Theorem | seqf1olem2 13248* | Lemma for seqf1o 13249. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) & ⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝐶) & ⊢ 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)))) & ⊢ 𝐾 = (◡𝐹‘(𝑁 + 1)) & ⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) ⇒ ⊢ (𝜑 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1))) | ||
Theorem | seqf1o 13249* | Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | seradd 13250* | The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 26-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | sersub 13251* | The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqid3 13252* | A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) |
⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | ||
Theorem | seqid 13253* | Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) | ||
Theorem | seqid2 13254* | The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑥) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | seqhomo 13255* | Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) | ||
Theorem | seqz 13256* | If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑍) & ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝑍) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) | ||
Theorem | seqfeq4 13257* | Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) | ||
Theorem | seqfeq3 13258* | Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
Theorem | seqdistr 13259* | The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | ser0 13260 | The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0) | ||
Theorem | ser0f 13261 | A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) | ||
Theorem | serge0 13262* | A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | serle 13263* | Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | ser1const 13264 | Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)) | ||
Theorem | seqof 13265* | Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝑧 ∈ 𝐴 ↦ (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) = (𝑧 ∈ 𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqof2 13266* | Distribute function operation through a sequence. Maps-to notation version of seqof 13265. (Contributed by Mario Carneiro, 7-Jul-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴)) → 𝑋 ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋)))‘𝑁) = (𝑧 ∈ 𝐴 ↦ (seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁))) | ||
Syntax | cexp 13267 | Extend class notation to include exponentiation of a complex number to an integer power. |
class ↑ | ||
Definition | df-exp 13268* |
Define exponentiation to nonnegative integer powers. For example,
(5↑2) = 25 (ex-exp 27909). Terminology: In general,
"exponentiation" is the operation of raising a
"base" 𝑥 to the power
of the "exponent" 𝑦, resulting in the "power"
(𝑥↑𝑦), also
called "x to the power of y". In this case, "integer
exponentiation" is
the operation of raising a complex "base" 𝑥 to the
power of an
integer 𝑦, resulting in the "integer
power" (𝑥↑𝑦).
This definition is not meant to be used directly; instead, exp0 13271 and expp1 13274 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts. 10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 13272). 4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 27909). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems. For a definition of exponentiation including complex exponents see df-cxp 24810 (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz 24919. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.) |
⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | ||
Theorem | expval 13269 | Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) | ||
Theorem | expnnval 13270 | Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | ||
Theorem | exp0 13271 | Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | ||
Theorem | 0exp0e1 13272 | 0↑0 = 1. This is our convention. It follows the convention used by Gleason; see Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (0↑0) = 1 | ||
Theorem | exp1 13273 | Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | ||
Theorem | expp1 13274 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expneg 13275 | Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expneg2 13276 | Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | ||
Theorem | expn1 13277 | A number to the negative one power is the reciprocal. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑-1) = (1 / 𝐴)) | ||
Theorem | expcllem 13278* | Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | expcl2lem 13279* | Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹) ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | nnexpcl 13280 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | ||
Theorem | nn0expcl 13281 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ0) | ||
Theorem | zexpcl 13282 | Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | ||
Theorem | qexpcl 13283 | Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | reexpcl 13284 | Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | expcl 13285 | Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | rpexpcl 13286 | Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | ||
Theorem | reexpclz 13287 | Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | qexpclz 13288 | Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | m1expcl2 13289 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | ||
Theorem | m1expcl 13290 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℤ) | ||
Theorem | expclzlem 13291 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) | ||
Theorem | expclz 13292 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | nn0expcli 13293 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐴↑𝑁) ∈ ℕ0 | ||
Theorem | nn0sqcl 13294 | The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0) | ||
Theorem | expm1t 13295 | Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) | ||
Theorem | 1exp 13296 | Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | ||
Theorem | expeq0 13297 | Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) | ||
Theorem | expne0 13298 | Positive integer exponentiation is nonzero iff its mantissa is nonzero. (Contributed by NM, 6-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) ≠ 0 ↔ 𝐴 ≠ 0)) | ||
Theorem | expne0i 13299 | Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | ||
Theorem | expgt0 13300 | Nonnegative integer exponentiation with a positive mantissa is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |