MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termorcl Structured version   Visualization version   GIF version

Theorem termorcl 18058
Description: Reverse closure for a terminal object: If a class has a terminal object, the class is a category. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
termorcl (𝑇 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat)

Proof of Theorem termorcl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-termo 18052 . 2 TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
21mptrcl 7038 1 (𝑇 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ∃!weu 2571  wral 3067  {crab 3443  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  TermOctermo 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-termo 18052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator