| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > termorcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a terminal object: If a class has a terminal object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| termorcl | ⊢ (𝑇 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-termo 17900 | . 2 ⊢ TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) | |
| 2 | 1 | mptrcl 6947 | 1 ⊢ (𝑇 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃!weu 2565 ∀wral 3048 {crab 3396 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Hom chom 17179 Catccat 17578 TermOctermo 17897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fv 6497 df-termo 17900 |
| This theorem is referenced by: termoo2 49394 oppcinito 49396 oppctermo 49397 termcterm2 49675 termolmd 49831 |
| Copyright terms: Public domain | W3C validator |