| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > initoval | Structured version Visualization version GIF version | ||
| Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
| initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| initoval | ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inito 18002 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
| 2 | fveq2 6881 | . . . 4 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 3 | initoval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 2, 3 | eqtr4di 2789 | . . 3 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 5 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
| 6 | initoval.h | . . . . . . . 8 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | 5, 6 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
| 8 | 7 | oveqd 7427 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏)) |
| 9 | 8 | eleq2d 2821 | . . . . 5 ⊢ (𝑐 = 𝐶 → (ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ℎ ∈ (𝑎𝐻𝑏))) |
| 10 | 9 | eubidv 2586 | . . . 4 ⊢ (𝑐 = 𝐶 → (∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
| 11 | 4, 10 | raleqbidv 3329 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
| 12 | 4, 11 | rabeqbidv 3439 | . 2 ⊢ (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
| 13 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 14 | 3 | fvexi 6895 | . . . 4 ⊢ 𝐵 ∈ V |
| 15 | 14 | rabex 5314 | . . 3 ⊢ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V) |
| 17 | 1, 12, 13, 16 | fvmptd3 7014 | 1 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 ∀wral 3052 {crab 3420 Vcvv 3464 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 Catccat 17681 InitOcinito 17999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-inito 18002 |
| This theorem is referenced by: isinito 18014 isinitoi 18017 dftermo2 18022 initopropdlem 49124 initopropd 49127 |
| Copyright terms: Public domain | W3C validator |