|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > initoval | Structured version Visualization version GIF version | ||
| Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| initoval.b | ⊢ 𝐵 = (Base‘𝐶) | 
| initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) | 
| Ref | Expression | 
|---|---|
| initoval | ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-inito 18029 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
| 2 | fveq2 6906 | . . . 4 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 3 | initoval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | 2, 3 | eqtr4di 2795 | . . 3 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) | 
| 5 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
| 6 | initoval.h | . . . . . . . 8 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | 5, 6 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) | 
| 8 | 7 | oveqd 7448 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏)) | 
| 9 | 8 | eleq2d 2827 | . . . . 5 ⊢ (𝑐 = 𝐶 → (ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ℎ ∈ (𝑎𝐻𝑏))) | 
| 10 | 9 | eubidv 2586 | . . . 4 ⊢ (𝑐 = 𝐶 → (∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) | 
| 11 | 4, 10 | raleqbidv 3346 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) | 
| 12 | 4, 11 | rabeqbidv 3455 | . 2 ⊢ (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) | 
| 13 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 14 | 3 | fvexi 6920 | . . . 4 ⊢ 𝐵 ∈ V | 
| 15 | 14 | rabex 5339 | . . 3 ⊢ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V | 
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V) | 
| 17 | 1, 12, 13, 16 | fvmptd3 7039 | 1 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃!weu 2568 ∀wral 3061 {crab 3436 Vcvv 3480 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 Hom chom 17308 Catccat 17707 InitOcinito 18026 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-inito 18029 | 
| This theorem is referenced by: isinito 18041 isinitoi 18044 dftermo2 18049 | 
| Copyright terms: Public domain | W3C validator |