Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > initoval | Structured version Visualization version GIF version |
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
initoval | ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inito 17490 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
2 | fveq2 6717 | . . . 4 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | initoval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | eqtr4di 2796 | . . 3 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6717 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | initoval.h | . . . . . . . 8 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 7230 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏)) |
9 | 8 | eleq2d 2823 | . . . . 5 ⊢ (𝑐 = 𝐶 → (ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ℎ ∈ (𝑎𝐻𝑏))) |
10 | 9 | eubidv 2585 | . . . 4 ⊢ (𝑐 = 𝐶 → (∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
11 | 4, 10 | raleqbidv 3313 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
12 | 4, 11 | rabeqbidv 3396 | . 2 ⊢ (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
13 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 3 | fvexi 6731 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 14 | rabex 5225 | . . 3 ⊢ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V) |
17 | 1, 12, 13, 16 | fvmptd3 6841 | 1 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∃!weu 2567 ∀wral 3061 {crab 3065 Vcvv 3408 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 Hom chom 16813 Catccat 17167 InitOcinito 17487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-inito 17490 |
This theorem is referenced by: isinito 17502 isinitoi 17505 dftermo2 17510 |
Copyright terms: Public domain | W3C validator |