MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoval Structured version   Visualization version   GIF version

Theorem initoval 17689
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
initoval (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
Distinct variable groups:   𝑎,𝑏,   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,
Allowed substitution hints:   𝜑(,𝑎,𝑏)   𝐵()   𝐻(,𝑎,𝑏)

Proof of Theorem initoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-inito 17680 . 2 InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
2 fveq2 6768 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 initoval.b . . . 4 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2797 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6768 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 initoval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2797 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7285 . . . . . 6 (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏))
98eleq2d 2825 . . . . 5 (𝑐 = 𝐶 → ( ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∈ (𝑎𝐻𝑏)))
109eubidv 2587 . . . 4 (𝑐 = 𝐶 → (∃! ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃! ∈ (𝑎𝐻𝑏)))
114, 10raleqbidv 3334 . . 3 (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)))
124, 11rabeqbidv 3418 . 2 (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
13 initoval.c . 2 (𝜑𝐶 ∈ Cat)
143fvexi 6782 . . . 4 𝐵 ∈ V
1514rabex 5259 . . 3 {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} ∈ V
1615a1i 11 . 2 (𝜑 → {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} ∈ V)
171, 12, 13, 16fvmptd3 6892 1 (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  ∃!weu 2569  wral 3065  {crab 3069  Vcvv 3430  cfv 6430  (class class class)co 7268  Basecbs 16893  Hom chom 16954  Catccat 17354  InitOcinito 17677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-inito 17680
This theorem is referenced by:  isinito  17692  isinitoi  17695  dftermo2  17700
  Copyright terms: Public domain W3C validator