![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > initoval | Structured version Visualization version GIF version |
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
initoval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
initoval.b | ⊢ 𝐵 = (Base‘𝐶) |
initoval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
initoval | ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inito 17084 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
2 | fveq2 6545 | . . . 4 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
3 | initoval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 2, 3 | syl6eqr 2851 | . . 3 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | fveq2 6545 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) | |
6 | initoval.h | . . . . . . . 8 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | 5, 6 | syl6eqr 2851 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
8 | 7 | oveqd 7040 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑎(Hom ‘𝑐)𝑏) = (𝑎𝐻𝑏)) |
9 | 8 | eleq2d 2870 | . . . . 5 ⊢ (𝑐 = 𝐶 → (ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ℎ ∈ (𝑎𝐻𝑏))) |
10 | 9 | eubidv 2634 | . . . 4 ⊢ (𝑐 = 𝐶 → (∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
11 | 4, 10 | raleqbidv 3363 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏))) |
12 | 4, 11 | rabeqbidv 3433 | . 2 ⊢ (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
13 | initoval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 3 | fvexi 6559 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 14 | rabex 5133 | . . 3 ⊢ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} ∈ V) |
17 | 1, 12, 13, 16 | fvmptd3 6664 | 1 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 ∃!weu 2613 ∀wral 3107 {crab 3111 Vcvv 3440 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 Hom chom 16409 Catccat 16768 InitOcinito 17081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-iota 6196 df-fun 6234 df-fv 6240 df-ov 7026 df-inito 17084 |
This theorem is referenced by: isinito 17093 isinitoi 17096 |
Copyright terms: Public domain | W3C validator |