MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mudivsum Structured version   Visualization version   GIF version

Theorem mudivsum 26105
Description: Asymptotic formula for Σ𝑛𝑥, μ(𝑛) / 𝑛 = 𝑂(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mudivsum (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem mudivsum
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10641 . . 3 (⊤ → 1 ∈ ℝ)
2 reex 10627 . . . . . . 7 ℝ ∈ V
3 rpssre 12395 . . . . . . 7 + ⊆ ℝ
42, 3ssexi 5225 . . . . . 6 + ∈ V
54a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
6 fzfid 13340 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
7 rpre 12396 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
8 elfznn 12935 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
9 nndivre 11677 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
107, 8, 9syl2an 597 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
1110recnd 10668 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
12 reflcl 13165 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
1310, 12syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
1413recnd 10668 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
1511, 14subcld 10996 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
168adantl 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
17 mucl 25717 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
1816, 17syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
1918zcnd 12087 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
2015, 19mulcld 10660 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
216, 20fsumcl 15089 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
22 rpcn 12398 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
23 rpne0 12404 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
2421, 22, 23divcld 11415 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ)
2524adantl 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) ∈ ℂ)
26 ovexd 7190 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ V)
27 eqidd 2822 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)))
28 eqidd 2822 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
295, 25, 26, 27, 28offval2 7425 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
303a1i 11 . . . . . 6 (⊤ → ℝ+ ⊆ ℝ)
3121adantr 483 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
3222adantr 483 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℂ)
3323adantr 483 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ≠ 0)
3431, 32, 33absdivd 14814 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)))
35 rprege0 12403 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
36 absid 14655 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
3735, 36syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (abs‘𝑥) = 𝑥)
3837adantr 483 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
3938oveq2d 7171 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / (abs‘𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥))
4034, 39eqtrd 2856 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥))
4131abscld 14795 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
42 fzfid 13340 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ∈ Fin)
4320adantlr 713 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ)
4443abscld 14795 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
4542, 44fsumrecl 15090 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ∈ ℝ)
467adantr 483 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ)
4742, 43fsumabs 15155 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))))
48 reflcl 13165 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4946, 48syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℝ)
50 1red 10641 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
5115adantlr 713 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
52 fz1ssnn 12937 . . . . . . . . . . . . . . . . . . . 20 (1...(⌊‘𝑥)) ⊆ ℕ
5352a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (1...(⌊‘𝑥)) ⊆ ℕ)
5453sselda 3966 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
5554, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
5655zcnd 12087 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
5751, 56absmuld 14813 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) = ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))))
5851abscld 14795 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5956abscld 14795 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
6051absge0d 14803 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
6156absge0d 14803 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(μ‘𝑛)))
62 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 𝑥 ∈ ℝ+)
638nnrpd 12428 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
64 rpdivcl 12413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
6562, 63, 64syl2an 597 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
663, 65sseldi 3964 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
6766, 12syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
68 flle 13168 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
6966, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
7067, 66, 69abssubge0d 14790 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
71 fracle1 13172 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
7266, 71syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
7370, 72eqbrtrd 5087 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ 1)
74 mule1 25724 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
7554, 74syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
7658, 50, 59, 50, 60, 61, 73, 75lemul12ad 11581 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))) ≤ (1 · 1))
77 1t1e1 11798 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
7876, 77breqtrdi 5106 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) · (abs‘(μ‘𝑛))) ≤ 1)
7957, 78eqbrtrd 5087 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 1)
8042, 44, 50, 79fsumle 15153 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))1)
81 1cnd 10635 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ ℂ)
82 fsumconst 15144 . . . . . . . . . . . . . . 15 (((1...(⌊‘𝑥)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = ((♯‘(1...(⌊‘𝑥))) · 1))
8342, 81, 82syl2anc 586 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = ((♯‘(1...(⌊‘𝑥))) · 1))
84 flge1nn 13190 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
857, 84sylan 582 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
8685nnnn0d 11954 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
87 hashfz1 13705 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
8886, 87syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
8988oveq1d 7170 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((♯‘(1...(⌊‘𝑥))) · 1) = ((⌊‘𝑥) · 1))
9049recnd 10668 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℂ)
9190mulid1d 10657 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((⌊‘𝑥) · 1) = (⌊‘𝑥))
9283, 89, 913eqtrd 2860 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))1 = (⌊‘𝑥))
9380, 92breqtrd 5091 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (⌊‘𝑥))
94 flle 13168 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
9546, 94syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ≤ 𝑥)
9645, 49, 46, 93, 95letrd 10796 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥)
9741, 45, 46, 47, 96letrd 10796 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ 𝑥)
9832mulid1d 10657 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · 1) = 𝑥)
9997, 98breqtrrd 5093 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1))
100 1red 10641 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ ℝ)
10141, 100, 62ledivmuld 12483 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1 ↔ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) ≤ (𝑥 · 1)))
10299, 101mpbird 259 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛))) / 𝑥) ≤ 1)
10340, 102eqbrtrd 5087 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1)
104103adantl 484 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ≤ 1)
10530, 25, 1, 1, 104elo1d 14892 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
106 ax-1cn 10594 . . . . . . 7 1 ∈ ℂ
107 divrcnv 15206 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
108106, 107ax-mp 5 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0
109 rlimo1 14972 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
110108, 109mp1i 13 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
111 o1add 14969 . . . . 5 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
112105, 110, 111syl2anc 586 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥)) ∘f + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
11329, 112eqeltrrd 2914 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))) ∈ 𝑂(1))
114 ovexd 7190 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)) ∈ V)
11518zred 12086 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
116115, 16nndivred 11690 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
117116recnd 10668 . . . . 5 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
1186, 117fsumcl 15089 . . . 4 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
119118adantl 484 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
120118adantr 483 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
121120abscld 14795 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ ℝ)
122117adantlr 713 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
12342, 32, 122fsummulc2 15138 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)))
12414, 19mulcld 10660 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) ∈ ℂ)
125124adantlr 713 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) ∈ ℂ)
12642, 43, 125fsumadd 15095 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))))
12711adantlr 713 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
12814adantlr 713 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
129127, 128npcand 11000 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) = (𝑥 / 𝑛))
130129oveq1d 7170 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((𝑥 / 𝑛) · (μ‘𝑛)))
13151, 128, 56adddird 10665 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) + (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) = ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))))
13232adantr 483 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
13354nnrpd 12428 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
134 rpcnne0 12406 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
135133, 134syl 17 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
136 div23 11316 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (μ‘𝑛)) / 𝑛) = ((𝑥 / 𝑛) · (μ‘𝑛)))
137 divass 11315 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (μ‘𝑛)) / 𝑛) = (𝑥 · ((μ‘𝑛) / 𝑛)))
138136, 137eqtr3d 2858 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (μ‘𝑛) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛)))
139132, 56, 135, 138syl3anc 1367 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) · (μ‘𝑛)) = (𝑥 · ((μ‘𝑛) / 𝑛)))
140130, 131, 1393eqtr3d 2864 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (𝑥 · ((μ‘𝑛) / 𝑛)))
141140sumeq2dv 15059 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)))
142 eqidd 2822 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → (μ‘𝑛) = (μ‘𝑛))
143 ssrab2 4055 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
144 simprr 771 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
145143, 144sseldi 3964 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
146145, 17syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℤ)
147146zcnd 12087 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℂ)
148142, 46, 147dvdsflsumcom 25764 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛))
1491473impb 1111 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (μ‘𝑛) ∈ ℂ)
150149mulid1d 10657 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → ((μ‘𝑛) · 1) = (μ‘𝑛))
1511502sumeq2dv 15061 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · 1) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛))
152 eqidd 2822 . . . . . . . . . . . . . 14 (𝑘 = 1 → 1 = 1)
153 nnuz 12280 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
15485, 153eleqtrdi 2923 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘1))
155 eluzfz1 12913 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
156154, 155syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → 1 ∈ (1...(⌊‘𝑥)))
157 1cnd 10635 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
158152, 42, 53, 156, 157musumsum 25768 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · 1) = 1)
159151, 158eqtr3d 2858 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (μ‘𝑛) = 1)
160 fzfid 13340 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
161 fsumconst 15144 . . . . . . . . . . . . . . 15 (((1...(⌊‘(𝑥 / 𝑛))) ∈ Fin ∧ (μ‘𝑛) ∈ ℂ) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)))
162160, 56, 161syl2anc 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)))
163 rprege0 12403 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ+ → ((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)))
164 flge0nn0 13189 . . . . . . . . . . . . . . . 16 (((𝑥 / 𝑛) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑛)) → (⌊‘(𝑥 / 𝑛)) ∈ ℕ0)
165 hashfz1 13705 . . . . . . . . . . . . . . . 16 ((⌊‘(𝑥 / 𝑛)) ∈ ℕ0 → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛)))
16665, 163, 164, 1654syl 19 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (♯‘(1...(⌊‘(𝑥 / 𝑛)))) = (⌊‘(𝑥 / 𝑛)))
167166oveq1d 7170 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((♯‘(1...(⌊‘(𝑥 / 𝑛)))) · (μ‘𝑛)) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
168162, 167eqtrd 2856 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = ((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
169168sumeq2dv 15059 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(μ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)))
170148, 159, 1693eqtr3rd 2865 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛)) = 1)
171170oveq2d 7171 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((⌊‘(𝑥 / 𝑛)) · (μ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
172126, 141, 1713eqtr3d 2864 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · ((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
173123, 172eqtrd 2856 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1))
174173oveq1d 7170 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥))
175120, 32, 33divcan3d 11420 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛))
176 rpcnne0 12406 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
177176adantr 483 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
178 divdir 11322 . . . . . . . 8 ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
17931, 81, 177, 178syl3anc 1367 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) + 1) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
180174, 175, 1793eqtr3d 2864 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥)))
181180fveq2d 6673 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
182121, 181eqled 10742 . . . 4 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
183182adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) · (μ‘𝑛)) / 𝑥) + (1 / 𝑥))))
1841, 113, 114, 119, 183o1le 15008 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
185184mptru 1540 1 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  wne 3016  {crab 3142  Vcvv 3494  wss 3935   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  f cof 7406  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  cmin 10869   / cdiv 11296  cn 11637  0cn0 11896  cz 11980  cuz 12242  +crp 12388  ...cfz 12891  cfl 13159  chash 13689  abscabs 14592  𝑟 crli 14841  𝑂(1)co1 14842  Σcsu 15041  cdvds 15606  μcmu 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-ico 12743  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-o1 14846  df-lo1 14847  df-sum 15042  df-dvds 15607  df-gcd 15843  df-prm 16015  df-pc 16173  df-mu 25677
This theorem is referenced by:  mulogsumlem  26106  mulog2sumlem3  26111  selberglem1  26120
  Copyright terms: Public domain W3C validator