MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem2 Structured version   Visualization version   GIF version

Theorem selberglem2 25434
Description: Lemma for selberg 25436. (Contributed by Mario Carneiro, 23-May-2016.)
Hypothesis
Ref Expression
selberglem1.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
Assertion
Ref Expression
selberglem2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑚,𝑛)

Proof of Theorem selberglem2
StepHypRef Expression
1 reex 10219 . . . . . . 7 ℝ ∈ V
2 rpssre 12036 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 4955 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 fzfid 12966 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 12563 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 473 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 mucl 25066 . . . . . . . . . 10 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
97, 8syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
109zred 11674 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
1110recnd 10260 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
12 fzfid 12966 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
13 elfznn 12563 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
1413adantl 473 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
1514nnrpd 12063 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
1615relogcld 24568 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
1716resqcld 13229 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚)↑2) ∈ ℝ)
1812, 17fsumrecl 14664 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℝ)
19 simplr 809 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
2018, 19rerpdivcld 12096 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) ∈ ℝ)
2120recnd 10260 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) ∈ ℂ)
22 selberglem1.t . . . . . . . . . 10 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
23 simpr 479 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
246nnrpd 12063 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
25 rpdivcl 12049 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
2623, 24, 25syl2an 495 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2726relogcld 24568 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
2827resqcld 13229 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
29 2re 11282 . . . . . . . . . . . . 13 2 ∈ ℝ
30 remulcl 10213 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘(𝑥 / 𝑛)) ∈ ℝ) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ)
3129, 27, 30sylancr 698 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ)
32 resubcl 10537 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3329, 31, 32sylancr 698 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3428, 33readdcld 10261 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℝ)
3534, 7nndivred 11261 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛) ∈ ℝ)
3622, 35syl5eqel 2843 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℝ)
3736recnd 10260 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
3821, 37subcld 10584 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) ∈ ℂ)
3911, 38mulcld 10252 . . . . . 6 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
405, 39fsumcl 14663 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
4111, 37mulcld 10252 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · 𝑇) ∈ ℂ)
425, 41fsumcl 14663 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) ∈ ℂ)
43 2cn 11283 . . . . . . 7 2 ∈ ℂ
44 relogcl 24521 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4544adantl 473 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4645recnd 10260 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
47 mulcl 10212 . . . . . . 7 ((2 ∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 · (log‘𝑥)) ∈ ℂ)
4843, 46, 47sylancr 698 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
4942, 48subcld 10584 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) ∈ ℂ)
50 eqidd 2761 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
51 eqidd 2761 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))))
524, 40, 49, 50, 51offval2 7079 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))))
5340, 42, 48addsubassd 10604 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) − (2 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))))
54 rpcnne0 12043 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5554adantl 473 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5655simpld 477 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
5710adantr 472 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (μ‘𝑛) ∈ ℝ)
5857, 17remulcld 10262 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℝ)
5912, 58fsumrecl 14664 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℝ)
6059recnd 10260 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℂ)
6155simprd 482 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
625, 56, 60, 61fsumdivc 14717 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
6317recnd 10260 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚)↑2) ∈ ℂ)
6412, 63fsumcl 14663 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℂ)
6555adantr 472 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
66 divass 10895 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
6711, 64, 65, 66syl3anc 1477 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
6812, 11, 63fsummulc2 14715 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)))
6968oveq1d 6828 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
7021, 37npcand 10588 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥))
7170oveq2d 6829 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇)) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
7211, 38, 37adddid 10256 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇)) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7371, 72eqtr3d 2796 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7467, 69, 733eqtr3d 2802 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7574sumeq2dv 14632 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
765, 39, 41fsumadd 14669 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)))
7762, 75, 763eqtrrd 2799 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
7877oveq1d 6828 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
7953, 78eqtr3d 2796 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
8079mpteq2dva 4896 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))))
8152, 80eqtrd 2794 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))))
82 1red 10247 . . . . 5 (⊤ → 1 ∈ ℝ)
835, 28fsumrecl 14664 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
8483, 23rerpdivcld 12096 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℝ)
8584recnd 10260 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℂ)
86 2cnd 11285 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
87 2nn0 11501 . . . . . . . 8 2 ∈ ℕ0
88 logexprlim 25149 . . . . . . . 8 (2 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥)) ⇝𝑟 (!‘2))
8987, 88mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥)) ⇝𝑟 (!‘2))
90 2cnd 11285 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
91 rlimconst 14474 . . . . . . . 8 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ⇝𝑟 2)
922, 90, 91sylancr 698 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ 2) ⇝𝑟 2)
9385, 86, 89, 92rlimadd 14572 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ⇝𝑟 ((!‘2) + 2))
94 rlimo1 14546 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ⇝𝑟 ((!‘2) + 2) → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ 𝑂(1))
9593, 94syl 17 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ 𝑂(1))
96 readdcl 10211 . . . . . 6 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℝ ∧ 2 ∈ ℝ) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℝ)
9784, 29, 96sylancl 697 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℝ)
9840abscld 14374 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
9997recnd 10260 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℂ)
10099abscld 14374 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ ℝ)
10139abscld 14374 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
1025, 101fsumrecl 14664 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
1035, 39fsumabs 14732 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
104 readdcl 10211 . . . . . . . . . . . 12 ((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 2 ∈ ℝ) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
10528, 29, 104sylancl 697 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
106105, 19rerpdivcld 12096 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ∈ ℝ)
1075, 106fsumrecl 14664 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ∈ ℝ)
10838abscld 14374 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℝ)
10911, 38absmuld 14392 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
11011abscld 14374 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
111 1red 10247 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
11238absge0d 14382 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
113 mule1 25073 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
1147, 113syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
115110, 111, 108, 112, 114lemul1ad 11155 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (1 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
116108recnd 10260 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
117116mulid2d 10250 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
118115, 117breqtrd 4830 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
119109, 118eqbrtrd 4826 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
12065simpld 477 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
121120, 38absmuld 14392 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = ((abs‘𝑥) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
122120, 21, 37subdid 10678 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) = ((𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) − (𝑥 · 𝑇)))
12365simprd 482 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
12464, 120, 123divcan2d 10995 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2))
12534recnd 10260 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
1267nnrpd 12063 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
127 rpcnne0 12043 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
128126, 127syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
129 divass 10895 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (𝑥 · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)))
13022oveq2i 6824 . . . . . . . . . . . . . . . . . . . 20 (𝑥 · 𝑇) = (𝑥 · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛))
131129, 130syl6eqr 2812 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (𝑥 · 𝑇))
132 div23 10896 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
133131, 132eqtr3d 2796 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (𝑥 · 𝑇) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
134120, 125, 128, 133syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · 𝑇) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
135124, 134oveq12d 6831 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) − (𝑥 · 𝑇)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))))))
136122, 135eqtrd 2794 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))))))
137136fveq2d 6356 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))))
138 rprege0 12040 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
139 absid 14235 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
14019, 138, 1393syl 18 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑥) = 𝑥)
141140oveq1d 6828 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘𝑥) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
142121, 137, 1413eqtr3d 2802 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) = (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
1437nncnd 11228 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
144143mulid2d 10250 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
145 rpre 12032 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
146145adantl 473 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
147 fznnfl 12855 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
149148simplbda 655 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
150144, 149eqbrtrd 4826 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
15119rpred 12065 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
152111, 151, 126lemuldivd 12114 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
153150, 152mpbid 222 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
154 log2sumbnd 25432 . . . . . . . . . . . . . 14 (((𝑥 / 𝑛) ∈ ℝ+ ∧ 1 ≤ (𝑥 / 𝑛)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
15526, 153, 154syl2anc 696 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
156142, 155eqbrtrrd 4828 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
157108, 105, 19lemuldiv2d 12115 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2) ↔ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥)))
158156, 157mpbid 222 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
159101, 108, 106, 119, 158letrd 10386 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
1605, 101, 106, 159fsumle 14730 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
1615, 105fsumrecl 14664 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
162 remulcl 10213 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑥 · 2) ∈ ℝ)
163146, 29, 162sylancl 697 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 · 2) ∈ ℝ)
16483, 163readdcld 10261 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) ∈ ℝ)
16528recnd 10260 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
166 2cnd 11285 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1675, 165, 166fsumadd 14669 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + Σ𝑛 ∈ (1...(⌊‘𝑥))2))
168 fsumconst 14721 . . . . . . . . . . . . . . . 16 (((1...(⌊‘𝑥)) ∈ Fin ∧ 2 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((♯‘(1...(⌊‘𝑥))) · 2))
1695, 43, 168sylancl 697 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((♯‘(1...(⌊‘𝑥))) · 2))
170138adantl 473 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
171 flge0nn0 12815 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
172 hashfz1 13328 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
173170, 171, 1723syl 18 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
174173oveq1d 6828 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · 2) = ((⌊‘𝑥) · 2))
175169, 174eqtrd 2794 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((⌊‘𝑥) · 2))
176175oveq2d 6829 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + Σ𝑛 ∈ (1...(⌊‘𝑥))2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)))
177167, 176eqtrd 2794 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)))
178 reflcl 12791 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
179146, 178syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
18029a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℝ)
181179, 180remulcld 10262 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) · 2) ∈ ℝ)
182 flle 12794 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
183146, 182syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
184 2pos 11304 . . . . . . . . . . . . . . . . 17 0 < 2
18529, 184pm3.2i 470 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
186185a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℝ ∧ 0 < 2))
187 lemul1 11067 . . . . . . . . . . . . . . 15 (((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘𝑥) ≤ 𝑥 ↔ ((⌊‘𝑥) · 2) ≤ (𝑥 · 2)))
188179, 146, 186, 187syl3anc 1477 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) ≤ 𝑥 ↔ ((⌊‘𝑥) · 2) ≤ (𝑥 · 2)))
189183, 188mpbid 222 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) · 2) ≤ (𝑥 · 2))
190181, 163, 83, 189leadd2dd 10834 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)))
191177, 190eqbrtrd 4826 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)))
192161, 164, 23, 191lediv1dd 12123 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥))
193105recnd 10260 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℂ)
1945, 56, 193, 61fsumdivc 14717 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
19583recnd 10260 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
19656, 86mulcld 10252 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 · 2) ∈ ℂ)
197 divdir 10902 . . . . . . . . . . . 12 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℂ ∧ (𝑥 · 2) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)))
198195, 196, 55, 197syl3anc 1477 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)))
19986, 56, 61divcan3d 10998 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑥 · 2) / 𝑥) = 2)
200199oveq2d 6829 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
201198, 200eqtrd 2794 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
202192, 194, 2013brtr3d 4835 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
203102, 107, 97, 160, 202letrd 10386 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
20498, 102, 97, 103, 203letrd 10386 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
20597leabsd 14352 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
20698, 97, 100, 204, 205letrd 10386 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
207206adantrr 755 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
20882, 95, 97, 40, 207o1le 14582 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ 𝑂(1))
20922selberglem1 25433 . . . 4 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
210 o1add 14543 . . . 4 (((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
211208, 209, 210sylancl 697 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
21281, 211eqeltrrd 2840 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
213212trud 1642 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wtru 1633  wcel 2139  wne 2932  Vcvv 3340  wss 3715   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  𝑓 cof 7060  Fincfn 8121  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  +crp 12025  ...cfz 12519  cfl 12785  cexp 13054  !cfa 13254  chash 13311  abscabs 14173  𝑟 crli 14415  𝑂(1)co1 14416  Σcsu 14615  logclog 24500  μcmu 25020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-o1 14420  df-lo1 14421  df-sum 14616  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503  df-em 24918  df-mu 25026
This theorem is referenced by:  selberglem3  25435  selberg  25436
  Copyright terms: Public domain W3C validator