Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsplit Structured version   Visualization version   GIF version

Theorem esumsplit 31312
Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.)
Hypotheses
Ref Expression
esumsplit.1 𝑘𝜑
esumsplit.2 𝑘𝐴
esumsplit.3 𝑘𝐵
esumsplit.4 (𝜑𝐴 ∈ V)
esumsplit.5 (𝜑𝐵 ∈ V)
esumsplit.6 (𝜑 → (𝐴𝐵) = ∅)
esumsplit.7 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumsplit.8 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsplit (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘𝐵𝐶))

Proof of Theorem esumsplit
StepHypRef Expression
1 esumsplit.1 . 2 𝑘𝜑
2 esumsplit.2 . . 3 𝑘𝐴
3 esumsplit.3 . . 3 𝑘𝐵
42, 3nfun 4141 . 2 𝑘(𝐴𝐵)
5 esumsplit.4 . . 3 (𝜑𝐴 ∈ V)
6 esumsplit.5 . . 3 (𝜑𝐵 ∈ V)
7 unexg 7472 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
85, 6, 7syl2anc 586 . 2 (𝜑 → (𝐴𝐵) ∈ V)
9 elun 4125 . . 3 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
10 esumsplit.7 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
11 esumsplit.8 . . . 4 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1210, 11jaodan 954 . . 3 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
139, 12sylan2b 595 . 2 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 xrge0base 30672 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
15 xrge0plusg 30674 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
16 xrge0cmn 20587 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1716a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
18 xrge0tmd 31188 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
1918a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd)
20 nfcv 2977 . . . 4 𝑘(0[,]+∞)
21 eqid 2821 . . . 4 (𝑘 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑘 ∈ (𝐴𝐵) ↦ 𝐶)
221, 4, 20, 13, 21fmptdF 30401 . . 3 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
231, 2, 5, 10esumel 31306 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
24 ssun1 4148 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
254, 2resmptf 5907 . . . . . 6 (𝐴 ⊆ (𝐴𝐵) → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
2624, 25mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
2726oveq2d 7172 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
2823, 27eleqtrrd 2916 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)))
291, 3, 6, 11esumel 31306 . . . 4 (𝜑 → Σ*𝑘𝐵𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
30 ssun2 4149 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
314, 3resmptf 5907 . . . . . 6 (𝐵 ⊆ (𝐴𝐵) → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘𝐵𝐶))
3230, 31mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘𝐵𝐶))
3332oveq2d 7172 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
3429, 33eleqtrrd 2916 . . 3 (𝜑 → Σ*𝑘𝐵𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)))
35 esumsplit.6 . . 3 (𝜑 → (𝐴𝐵) = ∅)
36 eqidd 2822 . . 3 (𝜑 → (𝐴𝐵) = (𝐴𝐵))
3714, 15, 17, 19, 8, 22, 28, 34, 35, 36tsmssplit 22760 . 2 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘𝐵𝐶) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ (𝐴𝐵) ↦ 𝐶)))
381, 4, 8, 13, 37esumid 31303 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wnf 1784  wcel 2114  wnfc 2961  Vcvv 3494  cun 3934  cin 3935  wss 3936  c0 4291  cmpt 5146  cres 5557  (class class class)co 7156  0cc0 10537  +∞cpnf 10672   +𝑒 cxad 12506  [,]cicc 12742  s cress 16484  *𝑠cxrs 16773  CMndccmn 18906  TopMndctmd 22678   tsums ctsu 22734  Σ*cesum 31286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-ordt 16774  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-ps 17810  df-tsr 17811  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-abv 19588  df-lmod 19636  df-scaf 19637  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tgp 22681  df-tsms 22735  df-trg 22768  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-ii 23485  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-esum 31287
This theorem is referenced by:  esummono  31313  esumpad  31314  esumpr  31325  esumrnmpt2  31327  esumfzf  31328  esumpmono  31338  hasheuni  31344  esum2dlem  31351  measvuni  31473  ddemeas  31495  carsgclctunlem1  31575
  Copyright terms: Public domain W3C validator