Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclim2 Structured version   Visualization version   GIF version

Theorem faclim2 31339
Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
Hypothesis
Ref Expression
faclim2.1 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
Assertion
Ref Expression
faclim2 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem faclim2
Dummy variables 𝑚 𝑎 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclim2.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2 oveq2 6612 . . . . . . 7 (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0))
32oveq2d 6620 . . . . . 6 (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0)))
4 oveq2 6612 . . . . . . 7 (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0))
54fveq2d 6152 . . . . . 6 (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0)))
63, 5oveq12d 6622 . . . . 5 (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
76mpteq2dv 4705 . . . 4 (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))))
87breq1d 4623 . . 3 (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1))
9 oveq2 6612 . . . . . . 7 (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚))
109oveq2d 6620 . . . . . 6 (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚)))
11 oveq2 6612 . . . . . . 7 (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚))
1211fveq2d 6152 . . . . . 6 (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚)))
1310, 12oveq12d 6622 . . . . 5 (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
1413mpteq2dv 4705 . . . 4 (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))))
1514breq1d 4623 . . 3 (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1))
16 oveq2 6612 . . . . . . 7 (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1)))
1716oveq2d 6620 . . . . . 6 (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))))
18 oveq2 6612 . . . . . . 7 (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1)))
1918fveq2d 6152 . . . . . 6 (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1))))
2017, 19oveq12d 6622 . . . . 5 (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
2120mpteq2dv 4705 . . . 4 (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))))
2221breq1d 4623 . . 3 (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
23 oveq2 6612 . . . . . . 7 (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀))
2423oveq2d 6620 . . . . . 6 (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀)))
25 oveq2 6612 . . . . . . 7 (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀))
2625fveq2d 6152 . . . . . 6 (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀)))
2724, 26oveq12d 6622 . . . . 5 (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))
2827mpteq2dv 4705 . . . 4 (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))))
2928breq1d 4623 . . 3 (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1))
30 nnuz 11667 . . . . 5 ℕ = (ℤ‘1)
31 1zzd 11352 . . . . 5 (⊤ → 1 ∈ ℤ)
32 nnex 10970 . . . . . . 7 ℕ ∈ V
3332mptex 6440 . . . . . 6 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V
3433a1i 11 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ∈ V)
35 1cnd 10000 . . . . 5 (⊤ → 1 ∈ ℂ)
36 fveq2 6148 . . . . . . . . . 10 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
37 oveq1 6611 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
3837oveq1d 6619 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0))
3936, 38oveq12d 6622 . . . . . . . . 9 (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0)))
40 oveq1 6611 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑛 + 0) = (𝑚 + 0))
4140fveq2d 6152 . . . . . . . . 9 (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0)))
4239, 41oveq12d 6622 . . . . . . . 8 (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
43 eqid 2621 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))
44 ovex 6632 . . . . . . . 8 (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) ∈ V
4542, 43, 44fvmpt 6239 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))))
46 peano2nn 10976 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
4746nncnd 10980 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℂ)
4847exp0d 12942 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) = 1)
4948oveq2d 6620 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = ((!‘𝑚) · 1))
50 nnnn0 11243 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
51 faccl 13010 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (!‘𝑚) ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℕ)
5352nncnd 10980 . . . . . . . . . 10 (𝑚 ∈ ℕ → (!‘𝑚) ∈ ℂ)
5453mulid1d 10001 . . . . . . . . 9 (𝑚 ∈ ℕ → ((!‘𝑚) · 1) = (!‘𝑚))
5549, 54eqtrd 2655 . . . . . . . 8 (𝑚 ∈ ℕ → ((!‘𝑚) · ((𝑚 + 1)↑0)) = (!‘𝑚))
56 nncn 10972 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5756addid1d 10180 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚)
5857fveq2d 6152 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘(𝑚 + 0)) = (!‘𝑚))
5955, 58oveq12d 6622 . . . . . . 7 (𝑚 ∈ ℕ → (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0))) = ((!‘𝑚) / (!‘𝑚)))
6052nnne0d 11009 . . . . . . . 8 (𝑚 ∈ ℕ → (!‘𝑚) ≠ 0)
6153, 60dividd 10743 . . . . . . 7 (𝑚 ∈ ℕ → ((!‘𝑚) / (!‘𝑚)) = 1)
6245, 59, 613eqtrd 2659 . . . . . 6 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6362adantl 482 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1)
6430, 31, 34, 35, 63climconst 14208 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)
6564trud 1490 . . 3 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1
66 1zzd 11352 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈ ℤ)
67 simpr 477 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)
6832mptex 6440 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V
6968a1i 11 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V)
70 1zzd 11352 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℤ)
71 1cnd 10000 . . . . . . . 8 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
72 nn0p1nn 11276 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
7372nnzd 11425 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℤ)
7432mptex 6440 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V
7574a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V)
76 oveq1 6611 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
77 oveq1 6611 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1)))
7876, 77oveq12d 6622 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
79 eqid 2621 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))
80 ovex 6632 . . . . . . . . . 10 ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V
8178, 79, 80fvmpt 6239 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8281adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))
8330, 70, 71, 73, 75, 82divcnvlin 31323 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
8483adantr 481 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1)
85 simpr 477 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
8685nnnn0d 11295 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
87 faccl 13010 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℕ)
89 peano2nn 10976 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
90 nnexpcl 12813 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9189, 90sylan 488 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9291ancoms 469 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1)↑𝑚) ∈ ℕ)
9388, 92nnmulcld 11012 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℕ)
9493nnred 10979 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) ∈ ℝ)
95 nnnn0addcl 11267 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (𝑛 + 𝑚) ∈ ℕ)
9695ancoms 469 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ)
9796nnnn0d 11295 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 𝑚) ∈ ℕ0)
98 faccl 13010 . . . . . . . . . . . 12 ((𝑛 + 𝑚) ∈ ℕ0 → (!‘(𝑛 + 𝑚)) ∈ ℕ)
9997, 98syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (!‘(𝑛 + 𝑚)) ∈ ℕ)
10094, 99nndivred 11013 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℝ)
101100recnd 10012 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) ∈ ℂ)
102 eqid 2621 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))
103101, 102fmptd 6340 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))):ℕ⟶ℂ)
104103ffvelrnda 6315 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
105104adantlr 750 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ)
10689adantl 482 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
107106nnred 10979 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
10872adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
10985, 108nnaddcld 11011 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → (𝑛 + (𝑚 + 1)) ∈ ℕ)
110107, 109nndivred 11013 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ)
111110recnd 10012 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ)
112111, 79fmptd 6340 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))):ℕ⟶ℂ)
113112ffvelrnda 6315 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
114113adantlr 750 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ)
115 peano2nn 10976 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
116115adantl 482 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
117116nncnd 10980 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
118 simpl 473 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℕ0)
119117, 118expp1d 12949 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))
120119oveq2d 6620 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
121 simpr 477 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
122121nnnn0d 11295 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
123 faccl 13010 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
124122, 123syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℕ)
125124nncnd 10980 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘𝑘) ∈ ℂ)
126 nnexpcl 12813 . . . . . . . . . . . . . . 15 (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
127115, 126sylan 488 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
128127ancoms 469 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℕ)
129128nncnd 10980 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑚) ∈ ℂ)
130125, 129, 117mulassd 10007 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1))))
131120, 130eqtr4d 2658 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)))
132122, 118nn0addcld 11299 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + 𝑚) ∈ ℕ0)
133 facp1 13005 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
134132, 133syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)))
135121nncnd 10980 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
136118nn0cnd 11297 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 𝑚 ∈ ℂ)
137 1cnd 10000 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
138135, 136, 137addassd 10006 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1)))
139138fveq2d 6152 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1))))
140138oveq2d 6620 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
141134, 139, 1403eqtr3d 2663 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))
142131, 141oveq12d 6622 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
143124, 128nnmulcld 11012 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℕ)
144143nncnd 10980 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((!‘𝑘) · ((𝑘 + 1)↑𝑚)) ∈ ℂ)
145 faccl 13010 . . . . . . . . . . . 12 ((𝑘 + 𝑚) ∈ ℕ0 → (!‘(𝑘 + 𝑚)) ∈ ℕ)
146132, 145syl 17 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℕ)
147146nncnd 10980 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ∈ ℂ)
14872adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
149121, 148nnaddcld 11011 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℕ)
150149nncnd 10980 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ∈ ℂ)
151146nnne0d 11009 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (!‘(𝑘 + 𝑚)) ≠ 0)
152149nnne0d 11009 . . . . . . . . . 10 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (𝑘 + (𝑚 + 1)) ≠ 0)
153144, 147, 117, 150, 151, 152divmuldivd 10786 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))))
154142, 153eqtr4d 2658 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
155 fveq2 6148 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
15676oveq1d 6619 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1)))
157155, 156oveq12d 6622 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))))
15877fveq2d 6152 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1))))
159157, 158oveq12d 6622 . . . . . . . . . 10 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
160 eqid 2621 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))
161 ovex 6632 . . . . . . . . . 10 (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))) ∈ V
162159, 160, 161fvmpt 6239 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
163162adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1)))))
16476oveq1d 6619 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚))
165155, 164oveq12d 6622 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚)))
166 oveq1 6611 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 + 𝑚) = (𝑘 + 𝑚))
167166fveq2d 6152 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚)))
168165, 167oveq12d 6622 . . . . . . . . . . 11 (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
169 ovex 6632 . . . . . . . . . . 11 (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) ∈ V
170168, 102, 169fvmpt 6239 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))))
171170, 81oveq12d 6622 . . . . . . . . 9 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
172171adantl 482 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))))
173154, 163, 1723eqtr4d 2665 . . . . . . 7 ((𝑚 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
174173adantlr 750 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)))
17530, 66, 67, 69, 84, 105, 114, 174climmul 14297 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 · 1))
176 1t1e1 11119 . . . . 5 (1 · 1) = 1
177175, 176syl6breq 4654 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)
178177ex 450 . . 3 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1))
1798, 15, 22, 29, 65, 178nn0ind 11416 . 2 (𝑀 ∈ ℕ0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)
1801, 179syl5eqbr 4648 1 (𝑀 ∈ ℕ0𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wtru 1481  wcel 1987  Vcvv 3186   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   / cdiv 10628  cn 10964  0cn0 11236  cexp 12800  !cfa 13000  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-seq 12742  df-exp 12801  df-fac 13001  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator