Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem24 Structured version   Visualization version   GIF version

Theorem fourierdlem24 42436
Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem24 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)

Proof of Theorem fourierdlem24
StepHypRef Expression
1 0zd 11994 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 ∈ ℤ)
2 pire 25044 . . . . . . . . . 10 π ∈ ℝ
32renegcli 10947 . . . . . . . . 9 -π ∈ ℝ
4 iccssre 12819 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
53, 2, 4mp2an 690 . . . . . . . 8 (-π[,]π) ⊆ ℝ
6 eldifi 4103 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ (-π[,]π))
75, 6sseldi 3965 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℝ)
87adantr 483 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 2re 11712 . . . . . . . 8 2 ∈ ℝ
109, 2remulcli 10657 . . . . . . 7 (2 · π) ∈ ℝ
1110a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ)
12 simpr 487 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < 𝐴)
13 2pos 11741 . . . . . . . 8 0 < 2
14 pipos 25046 . . . . . . . 8 0 < π
159, 2, 13, 14mulgt0ii 10773 . . . . . . 7 0 < (2 · π)
1615a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (2 · π))
178, 11, 12, 16divgt0d 11575 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (𝐴 / (2 · π)))
1811, 16elrpd 12429 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ+)
192a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ)
2010a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ)
213rexri 10699 . . . . . . . . . . . 12 -π ∈ ℝ*
2221a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ∈ ℝ*)
2319rexrd 10691 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ*)
24 iccleub 12793 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2522, 23, 6, 24syl3anc 1367 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≤ π)
26 pirp 25047 . . . . . . . . . . 11 π ∈ ℝ+
27 2timesgt 41574 . . . . . . . . . . 11 (π ∈ ℝ+ → π < (2 · π))
2826, 27mp1i 13 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π < (2 · π))
297, 19, 20, 25, 28lelttrd 10798 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 < (2 · π))
3029adantr 483 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
318, 11, 18, 30ltdiv1dd 12489 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
3210recni 10655 . . . . . . . 8 (2 · π) ∈ ℂ
3310, 15gt0ne0ii 11176 . . . . . . . 8 (2 · π) ≠ 0
3432, 33dividi 11373 . . . . . . 7 ((2 · π) / (2 · π)) = 1
3531, 34breqtrdi 5107 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < 1)
36 0p1e1 11760 . . . . . 6 (0 + 1) = 1
3735, 36breqtrrdi 5108 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < (0 + 1))
38 btwnnz 12059 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
391, 17, 37, 38syl3anc 1367 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
40 simpl 485 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ((-π[,]π) ∖ {0}))
417adantr 483 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
42 0red 10644 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
43 simpr 487 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
4441, 42, 43nltled 10790 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ≤ 0)
45 eldifsni 4722 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≠ 0)
4645necomd 3071 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 0 ≠ 𝐴)
4746adantr 483 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ≠ 𝐴)
4841, 42, 44, 47leneltd 10794 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
49 neg1z 12019 . . . . . . 7 -1 ∈ ℤ
5049a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 ∈ ℤ)
5133a1i 11 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ≠ 0)
527, 20, 51redivcld 11468 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 / (2 · π)) ∈ ℝ)
5352adantr 483 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) ∈ ℝ)
54 1red 10642 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 1 ∈ ℝ)
557recnd 10669 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℂ)
5655adantr 483 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
5732a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℂ)
5833a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ≠ 0)
5956, 57, 58divnegd 11429 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) = (-𝐴 / (2 · π)))
607renegcld 11067 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ∈ ℝ)
6160adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6210a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ)
63 2rp 12395 . . . . . . . . . . . 12 2 ∈ ℝ+
64 rpmulcl 12413 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
6563, 26, 64mp2an 690 . . . . . . . . . . 11 (2 · π) ∈ ℝ+
6665a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ+)
67 iccgelb 12794 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6822, 23, 6, 67syl3anc 1367 . . . . . . . . . . . . 13 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ≤ 𝐴)
6919, 7, 68lenegcon1d 11222 . . . . . . . . . . . 12 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ≤ π)
7060, 19, 20, 69, 28lelttrd 10798 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 < (2 · π))
7170adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7261, 62, 66, 71ltdiv1dd 12489 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
7372, 34breqtrdi 5107 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < 1)
7459, 73eqbrtrd 5088 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) < 1)
7553, 54, 74ltnegcon1d 11220 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 < (𝐴 / (2 · π)))
767adantr 483 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
77 simpr 487 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 < 0)
7876, 66, 77divlt0gt0d 41572 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < 0)
79 neg1cn 11752 . . . . . . . . 9 -1 ∈ ℂ
80 ax-1cn 10595 . . . . . . . . 9 1 ∈ ℂ
8179, 80addcomi 10831 . . . . . . . 8 (-1 + 1) = (1 + -1)
82 1pneg1e0 11757 . . . . . . . 8 (1 + -1) = 0
8381, 82eqtr2i 2845 . . . . . . 7 0 = (-1 + 1)
8478, 83breqtrdi 5107 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < (-1 + 1))
85 btwnnz 12059 . . . . . 6 ((-1 ∈ ℤ ∧ -1 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (-1 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8650, 75, 84, 85syl3anc 1367 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8740, 48, 86syl2anc 586 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8839, 87pm2.61dan 811 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8965a1i 11 . . . 4 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ+)
90 mod0 13245 . . . 4 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
917, 89, 90syl2anc 586 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
9288, 91mtbird 327 . 2 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 mod (2 · π)) = 0)
9392neqned 3023 1 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3933  wss 3936  {csn 4567   class class class wbr 5066  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  -cneg 10871   / cdiv 11297  2c2 11693  cz 11982  +crp 12390  [,]cicc 12742   mod cmo 13238  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  fourierdlem66  42477
  Copyright terms: Public domain W3C validator