MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Structured version   Visualization version   GIF version

Theorem iserodd 15464
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
iserodd.f ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
iserodd.h (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
Assertion
Ref Expression
iserodd (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑛)   𝐶(𝑘)

Proof of Theorem iserodd
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11666 . 2 0 = (ℤ‘0)
2 nnuz 11667 . 2 ℕ = (ℤ‘1)
3 0zd 11333 . 2 (𝜑 → 0 ∈ ℤ)
4 1zzd 11352 . 2 (𝜑 → 1 ∈ ℤ)
5 2nn0 11253 . . . . . 6 2 ∈ ℕ0
65a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
7 nn0mulcl 11273 . . . . 5 ((2 ∈ ℕ0𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
86, 7sylan 488 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
9 nn0p1nn 11276 . . . 4 ((2 · 𝑚) ∈ ℕ0 → ((2 · 𝑚) + 1) ∈ ℕ)
108, 9syl 17 . . 3 ((𝜑𝑚 ∈ ℕ0) → ((2 · 𝑚) + 1) ∈ ℕ)
11 eqid 2621 . . 3 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))
1210, 11fmptd 6340 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)):ℕ0⟶ℕ)
13 nn0mulcl 11273 . . . . . 6 ((2 ∈ ℕ0𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
146, 13sylan 488 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
1514nn0red 11296 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℝ)
16 peano2nn0 11277 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
17 nn0mulcl 11273 . . . . . 6 ((2 ∈ ℕ0 ∧ (𝑖 + 1) ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
186, 16, 17syl2an 494 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
1918nn0red 11296 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℝ)
20 1red 9999 . . . 4 ((𝜑𝑖 ∈ ℕ0) → 1 ∈ ℝ)
21 nn0re 11245 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
2221adantl 482 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
2322ltp1d 10898 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 < (𝑖 + 1))
2416adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
2524nn0red 11296 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℝ)
26 2re 11034 . . . . . . 7 2 ∈ ℝ
2726a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 2 ∈ ℝ)
28 2pos 11056 . . . . . . 7 0 < 2
2928a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 0 < 2)
30 ltmul2 10818 . . . . . 6 ((𝑖 ∈ ℝ ∧ (𝑖 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
3122, 25, 27, 29, 30syl112anc 1327 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
3223, 31mpbid 222 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) < (2 · (𝑖 + 1)))
3315, 19, 20, 32ltadd1dd 10582 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((2 · 𝑖) + 1) < ((2 · (𝑖 + 1)) + 1))
34 oveq2 6612 . . . . . 6 (𝑚 = 𝑖 → (2 · 𝑚) = (2 · 𝑖))
3534oveq1d 6619 . . . . 5 (𝑚 = 𝑖 → ((2 · 𝑚) + 1) = ((2 · 𝑖) + 1))
36 ovex 6632 . . . . 5 ((2 · 𝑖) + 1) ∈ V
3735, 11, 36fvmpt 6239 . . . 4 (𝑖 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3837adantl 482 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
39 oveq2 6612 . . . . . 6 (𝑚 = (𝑖 + 1) → (2 · 𝑚) = (2 · (𝑖 + 1)))
4039oveq1d 6619 . . . . 5 (𝑚 = (𝑖 + 1) → ((2 · 𝑚) + 1) = ((2 · (𝑖 + 1)) + 1))
41 ovex 6632 . . . . 5 ((2 · (𝑖 + 1)) + 1) ∈ V
4240, 11, 41fvmpt 6239 . . . 4 ((𝑖 + 1) ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4324, 42syl 17 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4433, 38, 433brtr4d 4645 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) < ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)))
45 eldifi 3710 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) → 𝑛 ∈ ℕ)
46 simpr 477 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
47 0cnd 9977 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 ∈ ℂ)
48 nnz 11343 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4948adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
50 odd2np1 14989 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
5149, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
52 simprl 793 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℤ)
53 nnm1nn0 11278 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5453ad2antlr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℕ0)
5554nn0red 11296 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℝ)
5654nn0ge0d 11298 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ (𝑛 − 1))
5726a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℝ)
5828a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 < 2)
59 divge0 10836 . . . . . . . . . . . . . . . . . 18 ((((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑛 − 1) / 2))
6055, 56, 57, 58, 59syl22anc 1324 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ ((𝑛 − 1) / 2))
61 simprr 795 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) + 1) = 𝑛)
6261oveq1d 6619 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (𝑛 − 1))
63 2cn 11035 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
64 zcn 11326 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6564ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℂ)
66 mulcl 9964 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
6763, 65, 66sylancr 694 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (2 · 𝑘) ∈ ℂ)
68 ax-1cn 9938 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
69 pncan 10231 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
7067, 68, 69sylancl 693 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
7162, 70eqtr3d 2657 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) = (2 · 𝑘))
7271oveq1d 6619 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = ((2 · 𝑘) / 2))
73 2cnd 11037 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℂ)
74 2ne0 11057 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
7574a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ≠ 0)
7665, 73, 75divcan3d 10750 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) / 2) = 𝑘)
7772, 76eqtrd 2655 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = 𝑘)
7860, 77breqtrd 4639 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ 𝑘)
79 elnn0z 11334 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
8052, 78, 79sylanbrc 697 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℕ0)
8180ex 450 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑘 ∈ ℕ0))
82 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → ((2 · 𝑘) + 1) = 𝑛)
8382eqcomd 2627 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1))
8483a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1)))
8581, 84jcad 555 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → (𝑘 ∈ ℕ0𝑛 = ((2 · 𝑘) + 1))))
8685reximdv2 3008 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
8751, 86sylbid 230 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
88 iserodd.f . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
89 iserodd.h . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
9089eleq1d 2683 . . . . . . . . . . . . . 14 (𝑛 = ((2 · 𝑘) + 1) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
9188, 90syl5ibrcom 237 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9291rexlimdva 3024 . . . . . . . . . . . 12 (𝜑 → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9392adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9487, 93syld 47 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝐵 ∈ ℂ))
9594imp 445 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝐵 ∈ ℂ)
9647, 95ifclda 4092 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ)
97 eqid 2621 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))
9897fvmpt2 6248 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9946, 96, 98syl2anc 692 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
10045, 99sylan2 491 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
101 eldif 3565 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
102 vex 3189 . . . . . . . . . . . 12 𝑛 ∈ V
103 oveq2 6612 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (2 · 𝑚) = (2 · 𝑘))
104103oveq1d 6619 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
105104cbvmptv 4710 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑘 ∈ ℕ0 ↦ ((2 · 𝑘) + 1))
106105elrnmpt 5332 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
107102, 106ax-mp 5 . . . . . . . . . . 11 (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1))
10887, 107syl6ibr 242 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
109108con1d 139 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) → 2 ∥ 𝑛))
110109impr 648 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
111101, 110sylan2b 492 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
112111iftrued 4066 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → if(2 ∥ 𝑛, 0, 𝐵) = 0)
113100, 112eqtrd 2655 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
114113ralrimiva 2960 . . . 4 (𝜑 → ∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
115 nfv 1840 . . . . 5 𝑗((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0
116 nffvmpt1 6156 . . . . . 6 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗)
117116nfeq1 2774 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0
118 fveq2 6148 . . . . . 6 (𝑛 = 𝑗 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗))
119118eqeq1d 2623 . . . . 5 (𝑛 = 𝑗 → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0))
120115, 117, 119cbvral 3155 . . . 4 (∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
121114, 120sylib 208 . . 3 (𝜑 → ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
122121r19.21bi 2927 . 2 ((𝜑𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
12396, 97fmptd 6340 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)):ℕ⟶ℂ)
124123ffvelrnda 6315 . 2 ((𝜑𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) ∈ ℂ)
125 simpr 477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
126 eqid 2621 . . . . . . . 8 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
127126fvmpt2 6248 . . . . . . 7 ((𝑘 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
128125, 88, 127syl2anc 692 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
129 ovex 6632 . . . . . . . . . 10 ((2 · 𝑘) + 1) ∈ V
130104, 11, 129fvmpt 6239 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
131130adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
132131fveq2d 6152 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)))
133 nn0mulcl 11273 . . . . . . . . . 10 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
1346, 133sylan 488 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
135 nn0p1nn 11276 . . . . . . . . 9 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
136134, 135syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
137 2z 11353 . . . . . . . . . . . 12 2 ∈ ℤ
138 nn0z 11344 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
139138adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
140 dvdsmul1 14927 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · 𝑘))
141137, 139, 140sylancr 694 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 2 ∥ (2 · 𝑘))
142134nn0zd 11424 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℤ)
143 2nn 11129 . . . . . . . . . . . . 13 2 ∈ ℕ
144143a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
145 1lt2 11138 . . . . . . . . . . . . 13 1 < 2
146145a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 < 2)
147 ndvdsp1 15059 . . . . . . . . . . . 12 (((2 · 𝑘) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
148142, 144, 146, 147syl3anc 1323 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
149141, 148mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ¬ 2 ∥ ((2 · 𝑘) + 1))
150149iffalsed 4069 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) = 𝐶)
151150, 88eqeltrd 2698 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ)
152 breq2 4617 . . . . . . . . . 10 (𝑛 = ((2 · 𝑘) + 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 · 𝑘) + 1)))
153152, 89ifbieq2d 4083 . . . . . . . . 9 (𝑛 = ((2 · 𝑘) + 1) → if(2 ∥ 𝑛, 0, 𝐵) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
154153, 97fvmptg 6237 . . . . . . . 8 ((((2 · 𝑘) + 1) ∈ ℕ ∧ if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
155136, 151, 154syl2anc 692 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
156132, 155, 1503eqtrd 2659 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = 𝐶)
157128, 156eqtr4d 2658 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
158157ralrimiva 2960 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
159 nfv 1840 . . . . 5 𝑖((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘))
160 nffvmpt1 6156 . . . . . 6 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖)
161160nfeq1 2774 . . . . 5 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
162 fveq2 6148 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑘 ∈ ℕ0𝐶)‘𝑖))
163 fveq2 6148 . . . . . . 7 (𝑘 = 𝑖 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
164163fveq2d 6152 . . . . . 6 (𝑘 = 𝑖 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
165162, 164eqeq12d 2636 . . . . 5 (𝑘 = 𝑖 → (((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))))
166159, 161, 165cbvral 3155 . . . 4 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
167158, 166sylib 208 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
168167r19.21bi 2927 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
1691, 2, 3, 4, 12, 44, 122, 124, 168isercoll2 14333 1 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  ifcif 4058   class class class wbr 4613  cmpt 4673  ran crn 5075  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  seqcseq 12741  cli 14149  cdvds 14907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-seq 12742  df-exp 12801  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-dvds 14908
This theorem is referenced by:  atantayl3  24566  leibpilem2  24568
  Copyright terms: Public domain W3C validator