MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Structured version   Visualization version   GIF version

Theorem pntlemd 25000
Description: Lemma for pnt 25020. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
Assertion
Ref Expression
pntlemd (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 12062 . . . 4 (0(,)1) ⊆ ℝ
2 pntlem1.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
31, 2sseldi 3565 . . 3 (𝜑𝐿 ∈ ℝ)
4 eliooord 12060 . . . . 5 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
52, 4syl 17 . . . 4 (𝜑 → (0 < 𝐿𝐿 < 1))
65simpld 473 . . 3 (𝜑 → 0 < 𝐿)
73, 6elrpd 11701 . 2 (𝜑𝐿 ∈ ℝ+)
8 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
9 pntlem1.a . . . 4 (𝜑𝐴 ∈ ℝ+)
10 1rp 11668 . . . 4 1 ∈ ℝ+
11 rpaddcl 11686 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
129, 10, 11sylancl 692 . . 3 (𝜑 → (𝐴 + 1) ∈ ℝ+)
138, 12syl5eqel 2691 . 2 (𝜑𝐷 ∈ ℝ+)
14 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
15 1re 9895 . . . . . . . 8 1 ∈ ℝ
16 ltaddrp 11699 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
1715, 9, 16sylancr 693 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
189rpcnd 11706 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 ax-1cn 9850 . . . . . . . . 9 1 ∈ ℂ
20 addcom 10073 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2118, 19, 20sylancl 692 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
228, 21syl5eq 2655 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
2317, 22breqtrrd 4605 . . . . . 6 (𝜑 → 1 < 𝐷)
2413recgt1d 11718 . . . . . 6 (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1))
2523, 24mpbid 220 . . . . 5 (𝜑 → (1 / 𝐷) < 1)
2613rprecred 11715 . . . . . 6 (𝜑 → (1 / 𝐷) ∈ ℝ)
27 difrp 11700 . . . . . 6 (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2826, 15, 27sylancl 692 . . . . 5 (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2925, 28mpbid 220 . . . 4 (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+)
30 3nn0 11157 . . . . . . . . 9 3 ∈ ℕ0
31 2nn 11032 . . . . . . . . 9 2 ∈ ℕ
3230, 31decnncl 11350 . . . . . . . 8 32 ∈ ℕ
33 nnrp 11674 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
3432, 33ax-mp 5 . . . . . . 7 32 ∈ ℝ+
35 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
36 rpmulcl 11687 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
3734, 35, 36sylancr 693 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
387, 37rpdivcld 11721 . . . . 5 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
39 2z 11242 . . . . . 6 2 ∈ ℤ
40 rpexpcl 12696 . . . . . 6 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
4113, 39, 40sylancl 692 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℝ+)
4238, 41rpdivcld 11721 . . . 4 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
4329, 42rpmulcld 11720 . . 3 (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+)
4414, 43syl5eqel 2691 . 2 (𝜑𝐹 ∈ ℝ+)
457, 13, 443jca 1234 1 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  3c3 10918  cz 11210  cdc 11325  +crp 11664  (,)cioo 12002  cexp 12677  ψcchp 24536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-rp 11665  df-ioo 12006  df-seq 12619  df-exp 12678
This theorem is referenced by:  pntlemc  25001  pntlema  25002  pntlemb  25003  pntlemq  25007  pntlemr  25008  pntlemj  25009  pntlemf  25011  pntlemo  25013  pntleml  25017
  Copyright terms: Public domain W3C validator