MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Structured version   Visualization version   GIF version

Theorem pntlemd 26170
Description: Lemma for pnt 26190. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
Assertion
Ref Expression
pntlemd (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 12799 . . . 4 (0(,)1) ⊆ ℝ
2 pntlem1.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
31, 2sseldi 3965 . . 3 (𝜑𝐿 ∈ ℝ)
4 eliooord 12797 . . . . 5 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
52, 4syl 17 . . . 4 (𝜑 → (0 < 𝐿𝐿 < 1))
65simpld 497 . . 3 (𝜑 → 0 < 𝐿)
73, 6elrpd 12429 . 2 (𝜑𝐿 ∈ ℝ+)
8 pntlem1.d . . 3 𝐷 = (𝐴 + 1)
9 pntlem1.a . . . 4 (𝜑𝐴 ∈ ℝ+)
10 1rp 12394 . . . 4 1 ∈ ℝ+
11 rpaddcl 12412 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
129, 10, 11sylancl 588 . . 3 (𝜑 → (𝐴 + 1) ∈ ℝ+)
138, 12eqeltrid 2917 . 2 (𝜑𝐷 ∈ ℝ+)
14 pntlem1.f . . 3 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
15 1re 10641 . . . . . . . 8 1 ∈ ℝ
16 ltaddrp 12427 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
1715, 9, 16sylancr 589 . . . . . . 7 (𝜑 → 1 < (1 + 𝐴))
189rpcnd 12434 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 ax-1cn 10595 . . . . . . . . 9 1 ∈ ℂ
20 addcom 10826 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2118, 19, 20sylancl 588 . . . . . . . 8 (𝜑 → (𝐴 + 1) = (1 + 𝐴))
228, 21syl5eq 2868 . . . . . . 7 (𝜑𝐷 = (1 + 𝐴))
2317, 22breqtrrd 5094 . . . . . 6 (𝜑 → 1 < 𝐷)
2413recgt1d 12446 . . . . . 6 (𝜑 → (1 < 𝐷 ↔ (1 / 𝐷) < 1))
2523, 24mpbid 234 . . . . 5 (𝜑 → (1 / 𝐷) < 1)
2613rprecred 12443 . . . . . 6 (𝜑 → (1 / 𝐷) ∈ ℝ)
27 difrp 12428 . . . . . 6 (((1 / 𝐷) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2826, 15, 27sylancl 588 . . . . 5 (𝜑 → ((1 / 𝐷) < 1 ↔ (1 − (1 / 𝐷)) ∈ ℝ+))
2925, 28mpbid 234 . . . 4 (𝜑 → (1 − (1 / 𝐷)) ∈ ℝ+)
30 3nn0 11916 . . . . . . . . 9 3 ∈ ℕ0
31 2nn 11711 . . . . . . . . 9 2 ∈ ℕ
3230, 31decnncl 12119 . . . . . . . 8 32 ∈ ℕ
33 nnrp 12401 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
3432, 33ax-mp 5 . . . . . . 7 32 ∈ ℝ+
35 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
36 rpmulcl 12413 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
3734, 35, 36sylancr 589 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
387, 37rpdivcld 12449 . . . . 5 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
39 2z 12015 . . . . . 6 2 ∈ ℤ
40 rpexpcl 13449 . . . . . 6 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
4113, 39, 40sylancl 588 . . . . 5 (𝜑 → (𝐷↑2) ∈ ℝ+)
4238, 41rpdivcld 12449 . . . 4 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
4329, 42rpmulcld 12448 . . 3 (𝜑 → ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) ∈ ℝ+)
4414, 43eqeltrid 2917 . 2 (𝜑𝐹 ∈ ℝ+)
457, 13, 443jca 1124 1 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  cz 11982  cdc 12099  +crp 12390  (,)cioo 12739  cexp 13430  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-ioo 12743  df-seq 13371  df-exp 13431
This theorem is referenced by:  pntlemc  26171  pntlema  26172  pntlemb  26173  pntlemq  26177  pntlemr  26178  pntlemj  26179  pntlemf  26181  pntlemo  26183  pntleml  26187
  Copyright terms: Public domain W3C validator