Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem4 Structured version   Visualization version   GIF version

Theorem wallispilem4 39618
Description: 𝐹 maps to explicit expression for the ratio of two consecutive values of 𝐼. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem4.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem4.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑧)↑𝑛) d𝑧)
wallispilem4.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem4.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
Assertion
Ref Expression
wallispilem4 𝐺 = 𝐻
Distinct variable groups:   𝑧,𝑛   𝑧,𝐹
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑧,𝑘,𝑛)   𝐻(𝑧,𝑘,𝑛)   𝐼(𝑧,𝑘,𝑛)

Proof of Theorem wallispilem4
Dummy variables 𝑤 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6618 . . . . . . 7 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21fveq2d 6157 . . . . . 6 (𝑥 = 1 → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · 1)))
31oveq1d 6625 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) + 1) = ((2 · 1) + 1))
43fveq2d 6157 . . . . . 6 (𝑥 = 1 → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · 1) + 1)))
52, 4oveq12d 6628 . . . . 5 (𝑥 = 1 → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))))
6 fveq2 6153 . . . . . . 7 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
76oveq2d 6626 . . . . . 6 (𝑥 = 1 → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘1)))
87oveq2d 6626 . . . . 5 (𝑥 = 1 → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1))))
95, 8eqeq12d 2636 . . . 4 (𝑥 = 1 → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))))
10 oveq2 6618 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
1110fveq2d 6157 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · 𝑦)))
1210oveq1d 6625 . . . . . . 7 (𝑥 = 𝑦 → ((2 · 𝑥) + 1) = ((2 · 𝑦) + 1))
1312fveq2d 6157 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · 𝑦) + 1)))
1411, 13oveq12d 6628 . . . . 5 (𝑥 = 𝑦 → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))))
15 fveq2 6153 . . . . . . 7 (𝑥 = 𝑦 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑦))
1615oveq2d 6626 . . . . . 6 (𝑥 = 𝑦 → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘𝑦)))
1716oveq2d 6626 . . . . 5 (𝑥 = 𝑦 → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))))
1814, 17eqeq12d 2636 . . . 4 (𝑥 = 𝑦 → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
19 oveq2 6618 . . . . . . 7 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
2019fveq2d 6157 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · (𝑦 + 1))))
2119oveq1d 6625 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((2 · 𝑥) + 1) = ((2 · (𝑦 + 1)) + 1))
2221fveq2d 6157 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · (𝑦 + 1)) + 1)))
2320, 22oveq12d 6628 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))))
24 fveq2 6153 . . . . . . 7 (𝑥 = (𝑦 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑦 + 1)))
2524oveq2d 6626 . . . . . 6 (𝑥 = (𝑦 + 1) → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘(𝑦 + 1))))
2625oveq2d 6626 . . . . 5 (𝑥 = (𝑦 + 1) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))))
2723, 26eqeq12d 2636 . . . 4 (𝑥 = (𝑦 + 1) → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1))))))
28 oveq2 6618 . . . . . . 7 (𝑥 = 𝑛 → (2 · 𝑥) = (2 · 𝑛))
2928fveq2d 6157 . . . . . 6 (𝑥 = 𝑛 → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · 𝑛)))
3028oveq1d 6625 . . . . . . 7 (𝑥 = 𝑛 → ((2 · 𝑥) + 1) = ((2 · 𝑛) + 1))
3130fveq2d 6157 . . . . . 6 (𝑥 = 𝑛 → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · 𝑛) + 1)))
3229, 31oveq12d 6628 . . . . 5 (𝑥 = 𝑛 → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
33 fveq2 6153 . . . . . . 7 (𝑥 = 𝑛 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑛))
3433oveq2d 6626 . . . . . 6 (𝑥 = 𝑛 → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘𝑛)))
3534oveq2d 6626 . . . . 5 (𝑥 = 𝑛 → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
3632, 35eqeq12d 2636 . . . 4 (𝑥 = 𝑛 → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
37 2t1e2 11128 . . . . . . 7 (2 · 1) = 2
3837fveq2i 6156 . . . . . 6 (𝐼‘(2 · 1)) = (𝐼‘2)
3937oveq1i 6620 . . . . . . . 8 ((2 · 1) + 1) = (2 + 1)
40 2p1e3 11103 . . . . . . . 8 (2 + 1) = 3
4139, 40eqtri 2643 . . . . . . 7 ((2 · 1) + 1) = 3
4241fveq2i 6156 . . . . . 6 (𝐼‘((2 · 1) + 1)) = (𝐼‘3)
4338, 42oveq12i 6622 . . . . 5 ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))) = ((𝐼‘2) / (𝐼‘3))
44 2z 11361 . . . . . . . . 9 2 ∈ ℤ
45 uzid 11654 . . . . . . . . 9 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4644, 45ax-mp 5 . . . . . . . 8 2 ∈ (ℤ‘2)
47 wallispilem4.2 . . . . . . . . . 10 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑧)↑𝑛) d𝑧)
4847wallispilem2 39616 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (2 ∈ (ℤ‘2) → (𝐼‘2) = (((2 − 1) / 2) · (𝐼‘(2 − 2)))))
4948simp3i 1070 . . . . . . . 8 (2 ∈ (ℤ‘2) → (𝐼‘2) = (((2 − 1) / 2) · (𝐼‘(2 − 2))))
5046, 49ax-mp 5 . . . . . . 7 (𝐼‘2) = (((2 − 1) / 2) · (𝐼‘(2 − 2)))
51 2m1e1 11087 . . . . . . . . 9 (2 − 1) = 1
5251oveq1i 6620 . . . . . . . 8 ((2 − 1) / 2) = (1 / 2)
53 2cn 11043 . . . . . . . . . . 11 2 ∈ ℂ
5453subidi 10304 . . . . . . . . . 10 (2 − 2) = 0
5554fveq2i 6156 . . . . . . . . 9 (𝐼‘(2 − 2)) = (𝐼‘0)
5648simp1i 1068 . . . . . . . . 9 (𝐼‘0) = π
5755, 56eqtri 2643 . . . . . . . 8 (𝐼‘(2 − 2)) = π
5852, 57oveq12i 6622 . . . . . . 7 (((2 − 1) / 2) · (𝐼‘(2 − 2))) = ((1 / 2) · π)
59 ax-1cn 9946 . . . . . . . . 9 1 ∈ ℂ
60 2cnne0 11194 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
61 picn 24132 . . . . . . . . 9 π ∈ ℂ
62 div32 10657 . . . . . . . . 9 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ π ∈ ℂ) → ((1 / 2) · π) = (1 · (π / 2)))
6359, 60, 61, 62mp3an 1421 . . . . . . . 8 ((1 / 2) · π) = (1 · (π / 2))
64 2ne0 11065 . . . . . . . . . 10 2 ≠ 0
6561, 53, 64divcli 10719 . . . . . . . . 9 (π / 2) ∈ ℂ
6665mulid2i 9995 . . . . . . . 8 (1 · (π / 2)) = (π / 2)
6763, 66eqtri 2643 . . . . . . 7 ((1 / 2) · π) = (π / 2)
6850, 58, 673eqtri 2647 . . . . . 6 (𝐼‘2) = (π / 2)
69 3z 11362 . . . . . . . . 9 3 ∈ ℤ
70 2re 11042 . . . . . . . . . 10 2 ∈ ℝ
71 3re 11046 . . . . . . . . . 10 3 ∈ ℝ
72 2lt3 11147 . . . . . . . . . 10 2 < 3
7370, 71, 72ltleii 10112 . . . . . . . . 9 2 ≤ 3
74 eluz2 11645 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
7544, 69, 73, 74mpbir3an 1242 . . . . . . . 8 3 ∈ (ℤ‘2)
7647wallispilem2 39616 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (3 ∈ (ℤ‘2) → (𝐼‘3) = (((3 − 1) / 3) · (𝐼‘(3 − 2)))))
7776simp3i 1070 . . . . . . . 8 (3 ∈ (ℤ‘2) → (𝐼‘3) = (((3 − 1) / 3) · (𝐼‘(3 − 2))))
7875, 77ax-mp 5 . . . . . . 7 (𝐼‘3) = (((3 − 1) / 3) · (𝐼‘(3 − 2)))
79 3m1e2 11089 . . . . . . . . . 10 (3 − 1) = 2
8079eqcomi 2630 . . . . . . . . 9 2 = (3 − 1)
8180oveq1i 6620 . . . . . . . 8 (2 / 3) = ((3 − 1) / 3)
82 3cn 11047 . . . . . . . . . . 11 3 ∈ ℂ
8382, 53, 59, 40subaddrii 10322 . . . . . . . . . 10 (3 − 2) = 1
8483fveq2i 6156 . . . . . . . . 9 (𝐼‘(3 − 2)) = (𝐼‘1)
8548simp2i 1069 . . . . . . . . 9 (𝐼‘1) = 2
8684, 85eqtr2i 2644 . . . . . . . 8 2 = (𝐼‘(3 − 2))
8781, 86oveq12i 6622 . . . . . . 7 ((2 / 3) · 2) = (((3 − 1) / 3) · (𝐼‘(3 − 2)))
88 3ne0 11067 . . . . . . . . 9 3 ≠ 0
8953, 82, 88divcli 10719 . . . . . . . 8 (2 / 3) ∈ ℂ
9089, 53mulcomi 9998 . . . . . . 7 ((2 / 3) · 2) = (2 · (2 / 3))
9178, 87, 903eqtr2i 2649 . . . . . 6 (𝐼‘3) = (2 · (2 / 3))
9268, 91oveq12i 6622 . . . . 5 ((𝐼‘2) / (𝐼‘3)) = ((π / 2) / (2 · (2 / 3)))
93 1z 11359 . . . . . . . . 9 1 ∈ ℤ
94 seq1 12762 . . . . . . . . 9 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
9593, 94ax-mp 5 . . . . . . . 8 (seq1( · , 𝐹)‘1) = (𝐹‘1)
96 1nn 10983 . . . . . . . . 9 1 ∈ ℕ
97 oveq2 6618 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2 · 𝑘) = (2 · 1))
9897, 37syl6eq 2671 . . . . . . . . . . . . 13 (𝑘 = 1 → (2 · 𝑘) = 2)
9997oveq1d 6625 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 · 𝑘) − 1) = ((2 · 1) − 1))
10037oveq1i 6620 . . . . . . . . . . . . . . 15 ((2 · 1) − 1) = (2 − 1)
101100, 51eqtri 2643 . . . . . . . . . . . . . 14 ((2 · 1) − 1) = 1
10299, 101syl6eq 2671 . . . . . . . . . . . . 13 (𝑘 = 1 → ((2 · 𝑘) − 1) = 1)
10398, 102oveq12d 6628 . . . . . . . . . . . 12 (𝑘 = 1 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = (2 / 1))
10453div1i 10705 . . . . . . . . . . . 12 (2 / 1) = 2
105103, 104syl6eq 2671 . . . . . . . . . . 11 (𝑘 = 1 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = 2)
10698oveq1d 6625 . . . . . . . . . . . . 13 (𝑘 = 1 → ((2 · 𝑘) + 1) = (2 + 1))
107106, 40syl6eq 2671 . . . . . . . . . . . 12 (𝑘 = 1 → ((2 · 𝑘) + 1) = 3)
10898, 107oveq12d 6628 . . . . . . . . . . 11 (𝑘 = 1 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = (2 / 3))
109105, 108oveq12d 6628 . . . . . . . . . 10 (𝑘 = 1 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (2 · (2 / 3)))
110 wallispilem4.1 . . . . . . . . . 10 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
111 ovex 6638 . . . . . . . . . 10 (2 · (2 / 3)) ∈ V
112109, 110, 111fvmpt 6244 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = (2 · (2 / 3)))
11396, 112ax-mp 5 . . . . . . . 8 (𝐹‘1) = (2 · (2 / 3))
11495, 113eqtr2i 2644 . . . . . . 7 (2 · (2 / 3)) = (seq1( · , 𝐹)‘1)
115114oveq2i 6621 . . . . . 6 ((π / 2) / (2 · (2 / 3))) = ((π / 2) / (seq1( · , 𝐹)‘1))
11653, 89mulcli 9997 . . . . . . . . 9 (2 · (2 / 3)) ∈ ℂ
117113, 116eqeltri 2694 . . . . . . . 8 (𝐹‘1) ∈ ℂ
11895, 117eqeltri 2694 . . . . . . 7 (seq1( · , 𝐹)‘1) ∈ ℂ
11953, 82, 64, 88divne0i 10725 . . . . . . . . 9 (2 / 3) ≠ 0
12053, 89, 64, 119mulne0i 10622 . . . . . . . 8 (2 · (2 / 3)) ≠ 0
121114, 120eqnetrri 2861 . . . . . . 7 (seq1( · , 𝐹)‘1) ≠ 0
12265, 118, 121divreci 10722 . . . . . 6 ((π / 2) / (seq1( · , 𝐹)‘1)) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))
123115, 122eqtri 2643 . . . . 5 ((π / 2) / (2 · (2 / 3))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))
12443, 92, 1233eqtri 2647 . . . 4 ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))
125 oveq2 6618 . . . . . . 7 (((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
126125adantl 482 . . . . . 6 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
127 2cnd 11045 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 2 ∈ ℂ)
128 nncn 10980 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
12959a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 1 ∈ ℂ)
130127, 128, 129adddid 10016 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
131127mulid1d 10009 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 1) = 2)
132131oveq2d 6626 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + 2))
133130, 132eqtrd 2655 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + 2))
134133oveq1d 6625 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) = (((2 · 𝑦) + 2) − 1))
135127, 128mulcld 10012 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
136135, 127, 129addsubassd 10364 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 2) − 1) = ((2 · 𝑦) + (2 − 1)))
13751a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 − 1) = 1)
138137oveq2d 6626 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (2 − 1)) = ((2 · 𝑦) + 1))
139134, 136, 1383eqtrd 2659 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) = ((2 · 𝑦) + 1))
140139oveq1d 6625 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) = (((2 · 𝑦) + 1) / (2 · (𝑦 + 1))))
141140oveq1d 6625 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) = ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))))
14279a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (3 − 1) = 2)
143142oveq2d 6626 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (3 − 1)) = ((2 · 𝑦) + 2))
14482a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 3 ∈ ℂ)
145135, 144, 129addsubassd 10364 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 1) = ((2 · 𝑦) + (3 − 1)))
146143, 145, 1333eqtr4d 2665 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 1) = (2 · (𝑦 + 1)))
147146oveq1d 6625 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) = ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))
148147oveq1d 6625 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))) = (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))))
149141, 148oveq12d 6628 . . . . . . . . 9 (𝑦 ∈ ℕ → (((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
15044a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ∈ ℤ)
151 nnz 11351 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
152151peano2zd 11437 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
153150, 152zmulcld 11440 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℤ)
15470a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ∈ ℝ)
155 nnre 10979 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
156 1red 10007 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 1 ∈ ℝ)
157155, 156readdcld 10021 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℝ)
158 0le2 11063 . . . . . . . . . . . . . . 15 0 ≤ 2
159158a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 ≤ 2)
160 nnnn0 11251 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
161160nn0ge0d 11306 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 0 ≤ 𝑦)
162156, 155addge02d 10568 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (0 ≤ 𝑦 ↔ 1 ≤ (𝑦 + 1)))
163161, 162mpbid 222 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ≤ (𝑦 + 1))
164154, 157, 159, 163lemulge11d 10913 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 2 ≤ (2 · (𝑦 + 1)))
16544eluz1i 11647 . . . . . . . . . . . . 13 ((2 · (𝑦 + 1)) ∈ (ℤ‘2) ↔ ((2 · (𝑦 + 1)) ∈ ℤ ∧ 2 ≤ (2 · (𝑦 + 1))))
166153, 164, 165sylanbrc 697 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ (ℤ‘2))
16747, 166itgsinexp 39503 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝐼‘(2 · (𝑦 + 1))) = ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘((2 · (𝑦 + 1)) − 2))))
168133oveq1d 6625 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 2) = (((2 · 𝑦) + 2) − 2))
169135, 127pncand 10345 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · 𝑦) + 2) − 2) = (2 · 𝑦))
170168, 169eqtrd 2655 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 2) = (2 · 𝑦))
171170fveq2d 6157 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝐼‘((2 · (𝑦 + 1)) − 2)) = (𝐼‘(2 · 𝑦)))
172171oveq2d 6626 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘((2 · (𝑦 + 1)) − 2))) = ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))))
173167, 172eqtrd 2655 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘(2 · (𝑦 + 1))) = ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))))
174133oveq1d 6625 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) = (((2 · 𝑦) + 2) + 1))
175135, 127, 129addassd 10014 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 2) + 1) = ((2 · 𝑦) + (2 + 1)))
17640a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 + 1) = 3)
177176oveq2d 6626 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (2 + 1)) = ((2 · 𝑦) + 3))
178174, 175, 1773eqtrd 2659 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) = ((2 · 𝑦) + 3))
179178fveq2d 6157 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝐼‘((2 · (𝑦 + 1)) + 1)) = (𝐼‘((2 · 𝑦) + 3)))
180150, 151zmulcld 11440 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
18169a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 3 ∈ ℤ)
182180, 181zaddcld 11438 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℤ)
183154, 155remulcld 10022 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
18471a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 3 ∈ ℝ)
185183, 184readdcld 10021 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℝ)
186 nnge1 10998 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
187154, 155, 159, 186lemulge11d 10913 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
188 0re 9992 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
189 3pos 11066 . . . . . . . . . . . . . . . 16 0 < 3
190188, 71, 189ltleii 10112 . . . . . . . . . . . . . . 15 0 ≤ 3
191183, 184addge01d 10567 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (0 ≤ 3 ↔ (2 · 𝑦) ≤ ((2 · 𝑦) + 3)))
192190, 191mpbii 223 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ≤ ((2 · 𝑦) + 3))
193154, 183, 185, 187, 192letrd 10146 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 2 ≤ ((2 · 𝑦) + 3))
19444eluz1i 11647 . . . . . . . . . . . . 13 (((2 · 𝑦) + 3) ∈ (ℤ‘2) ↔ (((2 · 𝑦) + 3) ∈ ℤ ∧ 2 ≤ ((2 · 𝑦) + 3)))
195182, 193, 194sylanbrc 697 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ (ℤ‘2))
19647, 195itgsinexp 39503 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝐼‘((2 · 𝑦) + 3)) = (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))))
197179, 196eqtrd 2655 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘((2 · (𝑦 + 1)) + 1)) = (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))))
198173, 197oveq12d 6628 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
199135, 129addcld 10011 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℂ)
200128, 129addcld 10011 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
201127, 200mulcld 10012 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
20264a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
203 peano2nn 10984 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
204203nnne0d 11017 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ≠ 0)
205127, 200, 202, 204mulne0d 10631 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ≠ 0)
206199, 201, 205divcld 10753 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) ∈ ℂ)
207 2nn0 11261 . . . . . . . . . . . . 13 2 ∈ ℕ0
208207a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ∈ ℕ0)
209208, 160nn0mulcld 11308 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ0)
21047wallispilem3 39617 . . . . . . . . . . . 12 ((2 · 𝑦) ∈ ℕ0 → (𝐼‘(2 · 𝑦)) ∈ ℝ+)
211210rpcnd 11826 . . . . . . . . . . 11 ((2 · 𝑦) ∈ ℕ0 → (𝐼‘(2 · 𝑦)) ∈ ℂ)
212209, 211syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘(2 · 𝑦)) ∈ ℂ)
213135, 144addcld 10011 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℂ)
214 0red 9993 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 ∈ ℝ)
215 2pos 11064 . . . . . . . . . . . . . . . 16 0 < 2
216215a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 0 < 2)
217 nngt0 11001 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 0 < 𝑦)
218154, 155, 216, 217mulgt0d 10144 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 < (2 · 𝑦))
219184, 189jctir 560 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
220 elrp 11786 . . . . . . . . . . . . . . . 16 (3 ∈ ℝ+ ↔ (3 ∈ ℝ ∧ 0 < 3))
221219, 220sylibr 224 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 3 ∈ ℝ+)
222183, 221ltaddrpd 11857 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) < ((2 · 𝑦) + 3))
223214, 183, 185, 218, 222lttrd 10150 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < ((2 · 𝑦) + 3))
224223gt0ne0d 10544 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ≠ 0)
225201, 213, 224divcld 10753 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℂ)
226201, 213, 205, 224divne0d 10769 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ≠ 0)
227182, 150zsubcld 11439 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) ∈ ℤ)
228185, 154subge0d 10569 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (0 ≤ (((2 · 𝑦) + 3) − 2) ↔ 2 ≤ ((2 · 𝑦) + 3)))
229193, 228mpbird 247 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 ≤ (((2 · 𝑦) + 3) − 2))
230 elnn0z 11342 . . . . . . . . . . . . . 14 ((((2 · 𝑦) + 3) − 2) ∈ ℕ0 ↔ ((((2 · 𝑦) + 3) − 2) ∈ ℤ ∧ 0 ≤ (((2 · 𝑦) + 3) − 2)))
231227, 229, 230sylanbrc 697 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) ∈ ℕ0)
23247wallispilem3 39617 . . . . . . . . . . . . 13 ((((2 · 𝑦) + 3) − 2) ∈ ℕ0 → (𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℝ+)
233231, 232syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℝ+)
234233rpcnne0d 11833 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℂ ∧ (𝐼‘(((2 · 𝑦) + 3) − 2)) ≠ 0))
235225, 226, 234jca31 556 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℂ ∧ ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ≠ 0) ∧ ((𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℂ ∧ (𝐼‘(((2 · 𝑦) + 3) − 2)) ≠ 0)))
236 divmuldiv 10677 . . . . . . . . . 10 ((((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) ∈ ℂ ∧ (𝐼‘(2 · 𝑦)) ∈ ℂ) ∧ ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℂ ∧ ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ≠ 0) ∧ ((𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℂ ∧ (𝐼‘(((2 · 𝑦) + 3) − 2)) ≠ 0))) → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
237206, 212, 235, 236syl21anc 1322 . . . . . . . . 9 (𝑦 ∈ ℕ → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
238149, 198, 2373eqtr4d 2665 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))))
239135, 144, 127addsubassd 10364 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) = ((2 · 𝑦) + (3 − 2)))
24083a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (3 − 2) = 1)
241240oveq2d 6626 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + (3 − 2)) = ((2 · 𝑦) + 1))
242239, 241eqtrd 2655 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) = ((2 · 𝑦) + 1))
243242fveq2d 6157 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘(((2 · 𝑦) + 3) − 2)) = (𝐼‘((2 · 𝑦) + 1)))
244243oveq2d 6626 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2))) = ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))))
245244oveq2d 6626 . . . . . . . 8 (𝑦 ∈ ℕ → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))))
246238, 245eqtrd 2655 . . . . . . 7 (𝑦 ∈ ℕ → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))))
247246adantr 481 . . . . . 6 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))))
248 elnnuz 11676 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
249248biimpi 206 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ‘1))
250 seqp1 12764 . . . . . . . . . . . 12 (𝑦 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑦 + 1)) = ((seq1( · , 𝐹)‘𝑦) · (𝐹‘(𝑦 + 1))))
251249, 250syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘(𝑦 + 1)) = ((seq1( · , 𝐹)‘𝑦) · (𝐹‘(𝑦 + 1))))
252110a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))
253 oveq2 6618 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑦 + 1) → (2 · 𝑘) = (2 · (𝑦 + 1)))
254253oveq1d 6625 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) − 1) = ((2 · (𝑦 + 1)) − 1))
255253, 254oveq12d 6628 . . . . . . . . . . . . . . 15 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)))
256253oveq1d 6625 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) + 1) = ((2 · (𝑦 + 1)) + 1))
257253, 256oveq12d 6628 . . . . . . . . . . . . . . 15 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))
258255, 257oveq12d 6628 . . . . . . . . . . . . . 14 (𝑘 = (𝑦 + 1) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))
259258adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑘 = (𝑦 + 1)) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))
260154, 157remulcld 10022 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℝ)
261260, 156resubcld 10410 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) ∈ ℝ)
262 1lt2 11146 . . . . . . . . . . . . . . . . . . 19 1 < 2
263262a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 1 < 2)
264 nnrp 11794 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
265156, 264ltaddrp2d 11858 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
266154, 157, 263, 265mulgt1d 10912 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 1 < (2 · (𝑦 + 1)))
267156, 266gtned 10124 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ≠ 1)
268201, 129, 267subne0d 10353 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) ≠ 0)
269260, 261, 268redivcld 10805 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) ∈ ℝ)
270178, 185eqeltrd 2698 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) ∈ ℝ)
271178, 224eqnetrd 2857 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) ≠ 0)
272260, 270, 271redivcld 10805 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)) ∈ ℝ)
273269, 272remulcld 10022 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))) ∈ ℝ)
274252, 259, 203, 273fvmptd 6250 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝐹‘(𝑦 + 1)) = (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))
275274oveq2d 6626 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((seq1( · , 𝐹)‘𝑦) · (𝐹‘(𝑦 + 1))) = ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))
276251, 275eqtrd 2655 . . . . . . . . . 10 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘(𝑦 + 1)) = ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))
277276oveq2d 6626 . . . . . . . . 9 (𝑦 ∈ ℕ → (1 / (seq1( · , 𝐹)‘(𝑦 + 1))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))))
278277oveq2d 6626 . . . . . . . 8 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))) = ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))))
279139oveq2d 6626 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) = ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)))
280178oveq2d 6626 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)) = ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))
281279, 280oveq12d 6628 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))) = (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))
282281oveq2d 6626 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))) = ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
283282oveq2d 6626 . . . . . . . . . 10 (𝑦 ∈ ℕ → (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
284283oveq2d 6626 . . . . . . . . 9 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))) = ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))))
285 elfznn 12320 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (1...𝑦) → 𝑤 ∈ ℕ)
286285adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ (1...𝑦)) → 𝑤 ∈ ℕ)
287110a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℕ → 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))
288 oveq2 6618 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑤 → (2 · 𝑘) = (2 · 𝑤))
289288oveq1d 6625 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑤 → ((2 · 𝑘) − 1) = ((2 · 𝑤) − 1))
290288, 289oveq12d 6628 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑤 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑤) / ((2 · 𝑤) − 1)))
291288oveq1d 6625 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑤 → ((2 · 𝑘) + 1) = ((2 · 𝑤) + 1))
292288, 291oveq12d 6628 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑤 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑤) / ((2 · 𝑤) + 1)))
293290, 292oveq12d 6628 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑤 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))))
294293adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℕ ∧ 𝑘 = 𝑤) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))))
295 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ)
296 2rp 11789 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
297296a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 2 ∈ ℝ+)
298 nnrp 11794 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 𝑤 ∈ ℝ+)
299297, 298rpmulcld 11840 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℕ → (2 · 𝑤) ∈ ℝ+)
30070a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 2 ∈ ℝ)
301 nnre 10979 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 𝑤 ∈ ℝ)
302300, 301remulcld 10022 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → (2 · 𝑤) ∈ ℝ)
303 1red 10007 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 1 ∈ ℝ)
304302, 303resubcld 10410 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → ((2 · 𝑤) − 1) ∈ ℝ)
305 nnge1 10998 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 1 ≤ 𝑤)
306 nncn 10980 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
307306mulid2d 10010 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℕ → (1 · 𝑤) = 𝑤)
308303, 300, 298ltmul1d 11865 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ ℕ → (1 < 2 ↔ (1 · 𝑤) < (2 · 𝑤)))
309262, 308mpbii 223 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℕ → (1 · 𝑤) < (2 · 𝑤))
310307, 309eqbrtrrd 4642 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 𝑤 < (2 · 𝑤))
311303, 301, 302, 305, 310lelttrd 10147 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 1 < (2 · 𝑤))
312303, 302posdifd 10566 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → (1 < (2 · 𝑤) ↔ 0 < ((2 · 𝑤) − 1)))
313311, 312mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 0 < ((2 · 𝑤) − 1))
314304, 313elrpd 11821 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℕ → ((2 · 𝑤) − 1) ∈ ℝ+)
315299, 314rpdivcld 11841 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℕ → ((2 · 𝑤) / ((2 · 𝑤) − 1)) ∈ ℝ+)
316158a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 0 ≤ 2)
317298rpge0d 11828 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 0 ≤ 𝑤)
318300, 301, 316, 317mulge0d 10556 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 0 ≤ (2 · 𝑤))
319302, 318ge0p1rpd 11854 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℕ → ((2 · 𝑤) + 1) ∈ ℝ+)
320299, 319rpdivcld 11841 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℕ → ((2 · 𝑤) / ((2 · 𝑤) + 1)) ∈ ℝ+)
321315, 320rpmulcld 11840 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℕ → (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))) ∈ ℝ+)
322287, 294, 295, 321fvmptd 6250 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℕ → (𝐹𝑤) = (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))))
323322, 321eqeltrd 2698 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℕ → (𝐹𝑤) ∈ ℝ+)
324286, 323syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ (1...𝑦)) → (𝐹𝑤) ∈ ℝ+)
325 rpmulcl 11807 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 · 𝑧) ∈ ℝ+)
326325adantl 482 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑤 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑤 · 𝑧) ∈ ℝ+)
327249, 324, 326seqcl 12769 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘𝑦) ∈ ℝ+)
328327rpcnne0d 11833 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((seq1( · , 𝐹)‘𝑦) ∈ ℂ ∧ (seq1( · , 𝐹)‘𝑦) ≠ 0))
329296a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
330155, 161ge0p1rpd 11854 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℝ+)
331329, 330rpmulcld 11840 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℝ+)
332154, 155, 159, 161mulge0d 10556 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 ≤ (2 · 𝑦))
333183, 332ge0p1rpd 11854 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ+)
334331, 333rpdivcld 11841 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) ∈ ℝ+)
335329, 264rpmulcld 11840 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
336335, 221rpaddcld 11839 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℝ+)
337331, 336rpdivcld 11841 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℝ+)
338334, 337rpmulcld 11840 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℝ+)
339338rpcnne0d 11833 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ ∧ (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ≠ 0))
340 divdiv1 10688 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((seq1( · , 𝐹)‘𝑦) ∈ ℂ ∧ (seq1( · , 𝐹)‘𝑦) ≠ 0) ∧ ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ ∧ (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ≠ 0)) → ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
341129, 328, 339, 340syl3anc 1323 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
342341eqcomd 2627 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))) = ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
343342oveq2d 6626 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))) = ((π / 2) · ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
34465a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (π / 2) ∈ ℂ)
345327rpcnd 11826 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘𝑦) ∈ ℂ)
346327rpne0d 11829 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘𝑦) ≠ 0)
347345, 346reccld 10746 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑦)) ∈ ℂ)
348338rpcnd 11826 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ)
349338rpne0d 11829 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ≠ 0)
350344, 347, 348, 349divassd 10788 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = ((π / 2) · ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
351139, 268eqnetrrd 2858 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ≠ 0)
352201, 199, 201, 213, 351, 224divmuldivd 10794 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) = (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3))))
353352oveq2d 6626 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)))))
354344, 347mulcld 10012 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) ∈ ℂ)
355201, 201mulcld 10012 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) ∈ ℂ)
356199, 213mulcld 10012 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) ∈ ℂ)
357201, 201, 205, 205mulne0d 10631 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) ≠ 0)
358199, 213, 351, 224mulne0d 10631 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) ≠ 0)
359354, 355, 356, 357, 358divdiv2d 10785 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)))) = ((((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3))) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))))
360354, 356, 355, 357divassd 10788 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3))) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))))))
361359, 360eqtrd 2655 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))))))
362199, 201, 201, 213, 205, 224, 205divdivdivd 10800 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) = ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))))
363362eqcomd 2627 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))) = ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))
364363oveq2d 6626 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
365353, 361, 3643eqtrd 2659 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
366343, 350, 3653eqtr2d 2661 . . . . . . . . 9 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
36761a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ∈ ℂ)
368367halfcld 11229 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (π / 2) ∈ ℂ)
369368, 347mulcld 10012 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) ∈ ℂ)
370206, 225, 226divcld 10753 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ)
371369, 370mulcomd 10013 . . . . . . . . 9 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
372284, 366, 3713eqtrd 2659 . . . . . . . 8 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
373278, 372eqtrd 2655 . . . . . . 7 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
374373adantr 481 . . . . . 6 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
375126, 247, 3743eqtr4d 2665 . . . . 5 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))))
376375ex 450 . . . 4 (𝑦 ∈ ℕ → (((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1))))))
3779, 18, 27, 36, 124, 376nnind 10990 . . 3 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
378377mpteq2ia 4705 . 2 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
379 wallispilem4.3 . 2 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
380 wallispilem4.4 . 2 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
381378, 379, 3803eqtr4i 2653 1 𝐺 = 𝐻
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026  cle 10027  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  3c3 11023  0cn0 11244  cz 11329  cuz 11639  +crp 11784  (,)cioo 12125  ...cfz 12276  seqcseq 12749  cexp 12808  sincsin 14730  πcpi 14733  citg 23310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cc 9209  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-ovol 23156  df-vol 23157  df-mbf 23311  df-itg1 23312  df-itg2 23313  df-ibl 23314  df-itg 23315  df-0p 23360  df-limc 23553  df-dv 23554
This theorem is referenced by:  wallispilem5  39619
  Copyright terms: Public domain W3C validator