ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pru Unicode version

Theorem 1pru 7671
Description: The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1pru  |-  ( 2nd `  1P )  =  {
x  |  1Q  <Q  x }

Proof of Theorem 1pru
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7582 . . 3  |-  1P  =  <. { y  |  y 
<Q  1Q } ,  {
x  |  1Q  <Q  x } >.
21fveq2i 5581 . 2  |-  ( 2nd `  1P )  =  ( 2nd `  <. { y  |  y  <Q  1Q } ,  { x  |  1Q  <Q  x } >. )
3 ltnqex 7664 . . 3  |-  { y  |  y  <Q  1Q }  e.  _V
4 gtnqex 7665 . . 3  |-  { x  |  1Q  <Q  x }  e.  _V
53, 4op2nd 6235 . 2  |-  ( 2nd `  <. { y  |  y  <Q  1Q } ,  { x  |  1Q  <Q  x } >. )  =  { x  |  1Q  <Q  x }
62, 5eqtri 2226 1  |-  ( 2nd `  1P )  =  {
x  |  1Q  <Q  x }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {cab 2191   <.cop 3636   class class class wbr 4045   ` cfv 5272   2ndc2nd 6227   1Qc1q 7396    <Q cltq 7400   1Pc1p 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-2nd 6229  df-qs 6628  df-ni 7419  df-nqqs 7463  df-ltnqqs 7468  df-i1p 7582
This theorem is referenced by:  1idpru  7706  recexprlem1ssu  7749  recexprlemss1u  7751
  Copyright terms: Public domain W3C validator