| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pru | GIF version | ||
| Description: The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| 1pru | ⊢ (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1p 7534 | . . 3 ⊢ 1P = 〈{𝑦 ∣ 𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}〉 | |
| 2 | 1 | fveq2i 5561 | . 2 ⊢ (2nd ‘1P) = (2nd ‘〈{𝑦 ∣ 𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}〉) |
| 3 | ltnqex 7616 | . . 3 ⊢ {𝑦 ∣ 𝑦 <Q 1Q} ∈ V | |
| 4 | gtnqex 7617 | . . 3 ⊢ {𝑥 ∣ 1Q <Q 𝑥} ∈ V | |
| 5 | 3, 4 | op2nd 6205 | . 2 ⊢ (2nd ‘〈{𝑦 ∣ 𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}〉) = {𝑥 ∣ 1Q <Q 𝑥} |
| 6 | 2, 5 | eqtri 2217 | 1 ⊢ (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 {cab 2182 〈cop 3625 class class class wbr 4033 ‘cfv 5258 2nd c2nd 6197 1Qc1q 7348 <Q cltq 7352 1Pc1p 7359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-2nd 6199 df-qs 6598 df-ni 7371 df-nqqs 7415 df-ltnqqs 7420 df-i1p 7534 |
| This theorem is referenced by: 1idpru 7658 recexprlem1ssu 7701 recexprlemss1u 7703 |
| Copyright terms: Public domain | W3C validator |