![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pru | GIF version |
Description: The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
1pru | ⊢ (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7026 | . . 3 ⊢ 1P = 〈{𝑦 ∣ 𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}〉 | |
2 | 1 | fveq2i 5308 | . 2 ⊢ (2nd ‘1P) = (2nd ‘〈{𝑦 ∣ 𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}〉) |
3 | ltnqex 7108 | . . 3 ⊢ {𝑦 ∣ 𝑦 <Q 1Q} ∈ V | |
4 | gtnqex 7109 | . . 3 ⊢ {𝑥 ∣ 1Q <Q 𝑥} ∈ V | |
5 | 3, 4 | op2nd 5918 | . 2 ⊢ (2nd ‘〈{𝑦 ∣ 𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}〉) = {𝑥 ∣ 1Q <Q 𝑥} |
6 | 2, 5 | eqtri 2108 | 1 ⊢ (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥} |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 {cab 2074 〈cop 3449 class class class wbr 3845 ‘cfv 5015 2nd c2nd 5910 1Qc1q 6840 <Q cltq 6844 1Pc1p 6851 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-2nd 5912 df-qs 6298 df-ni 6863 df-nqqs 6907 df-ltnqqs 6912 df-i1p 7026 |
This theorem is referenced by: 1idpru 7150 recexprlem1ssu 7193 recexprlemss1u 7195 |
Copyright terms: Public domain | W3C validator |