ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pru GIF version

Theorem 1pru 7640
Description: The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1pru (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥}

Proof of Theorem 1pru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7551 . . 3 1P = ⟨{𝑦𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}⟩
21fveq2i 5564 . 2 (2nd ‘1P) = (2nd ‘⟨{𝑦𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}⟩)
3 ltnqex 7633 . . 3 {𝑦𝑦 <Q 1Q} ∈ V
4 gtnqex 7634 . . 3 {𝑥 ∣ 1Q <Q 𝑥} ∈ V
53, 4op2nd 6214 . 2 (2nd ‘⟨{𝑦𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}⟩) = {𝑥 ∣ 1Q <Q 𝑥}
62, 5eqtri 2217 1 (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {cab 2182  cop 3626   class class class wbr 4034  cfv 5259  2nd c2nd 6206  1Qc1q 7365   <Q cltq 7369  1Pc1p 7376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-2nd 6208  df-qs 6607  df-ni 7388  df-nqqs 7432  df-ltnqqs 7437  df-i1p 7551
This theorem is referenced by:  1idpru  7675  recexprlem1ssu  7718  recexprlemss1u  7720
  Copyright terms: Public domain W3C validator