ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pru GIF version

Theorem 1pru 7555
Description: The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1pru (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥}

Proof of Theorem 1pru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7466 . . 3 1P = ⟨{𝑦𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}⟩
21fveq2i 5519 . 2 (2nd ‘1P) = (2nd ‘⟨{𝑦𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}⟩)
3 ltnqex 7548 . . 3 {𝑦𝑦 <Q 1Q} ∈ V
4 gtnqex 7549 . . 3 {𝑥 ∣ 1Q <Q 𝑥} ∈ V
53, 4op2nd 6148 . 2 (2nd ‘⟨{𝑦𝑦 <Q 1Q}, {𝑥 ∣ 1Q <Q 𝑥}⟩) = {𝑥 ∣ 1Q <Q 𝑥}
62, 5eqtri 2198 1 (2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  {cab 2163  cop 3596   class class class wbr 4004  cfv 5217  2nd c2nd 6140  1Qc1q 7280   <Q cltq 7284  1Pc1p 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-2nd 6142  df-qs 6541  df-ni 7303  df-nqqs 7347  df-ltnqqs 7352  df-i1p 7466
This theorem is referenced by:  1idpru  7590  recexprlem1ssu  7633  recexprlemss1u  7635
  Copyright terms: Public domain W3C validator