ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1prl Unicode version

Theorem 1prl 7168
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1prl  |-  ( 1st `  1P )  =  {
x  |  x  <Q  1Q }

Proof of Theorem 1prl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7080 . . 3  |-  1P  =  <. { x  |  x 
<Q  1Q } ,  {
y  |  1Q  <Q  y } >.
21fveq2i 5321 . 2  |-  ( 1st `  1P )  =  ( 1st `  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >. )
3 ltnqex 7162 . . 3  |-  { x  |  x  <Q  1Q }  e.  _V
4 gtnqex 7163 . . 3  |-  { y  |  1Q  <Q  y }  e.  _V
53, 4op1st 5931 . 2  |-  ( 1st `  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >. )  =  { x  |  x 
<Q  1Q }
62, 5eqtri 2109 1  |-  ( 1st `  1P )  =  {
x  |  x  <Q  1Q }
Colors of variables: wff set class
Syntax hints:    = wceq 1290   {cab 2075   <.cop 3453   class class class wbr 3851   ` cfv 5028   1stc1st 5923   1Qc1q 6894    <Q cltq 6898   1Pc1p 6905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-1st 5925  df-qs 6312  df-ni 6917  df-nqqs 6961  df-ltnqqs 6966  df-i1p 7080
This theorem is referenced by:  1idprl  7203  recexprlem1ssl  7246  recexprlemss1l  7248
  Copyright terms: Public domain W3C validator