ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1prl Unicode version

Theorem 1prl 7585
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1prl  |-  ( 1st `  1P )  =  {
x  |  x  <Q  1Q }

Proof of Theorem 1prl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7497 . . 3  |-  1P  =  <. { x  |  x 
<Q  1Q } ,  {
y  |  1Q  <Q  y } >.
21fveq2i 5537 . 2  |-  ( 1st `  1P )  =  ( 1st `  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >. )
3 ltnqex 7579 . . 3  |-  { x  |  x  <Q  1Q }  e.  _V
4 gtnqex 7580 . . 3  |-  { y  |  1Q  <Q  y }  e.  _V
53, 4op1st 6172 . 2  |-  ( 1st `  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >. )  =  { x  |  x 
<Q  1Q }
62, 5eqtri 2210 1  |-  ( 1st `  1P )  =  {
x  |  x  <Q  1Q }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cab 2175   <.cop 3610   class class class wbr 4018   ` cfv 5235   1stc1st 6164   1Qc1q 7311    <Q cltq 7315   1Pc1p 7322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-1st 6166  df-qs 6566  df-ni 7334  df-nqqs 7378  df-ltnqqs 7383  df-i1p 7497
This theorem is referenced by:  1idprl  7620  recexprlem1ssl  7663  recexprlemss1l  7665
  Copyright terms: Public domain W3C validator