ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1prl Unicode version

Theorem 1prl 7703
Description: The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
1prl  |-  ( 1st `  1P )  =  {
x  |  x  <Q  1Q }

Proof of Theorem 1prl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-i1p 7615 . . 3  |-  1P  =  <. { x  |  x 
<Q  1Q } ,  {
y  |  1Q  <Q  y } >.
21fveq2i 5602 . 2  |-  ( 1st `  1P )  =  ( 1st `  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >. )
3 ltnqex 7697 . . 3  |-  { x  |  x  <Q  1Q }  e.  _V
4 gtnqex 7698 . . 3  |-  { y  |  1Q  <Q  y }  e.  _V
53, 4op1st 6255 . 2  |-  ( 1st `  <. { x  |  x  <Q  1Q } ,  { y  |  1Q  <Q  y } >. )  =  { x  |  x 
<Q  1Q }
62, 5eqtri 2228 1  |-  ( 1st `  1P )  =  {
x  |  x  <Q  1Q }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {cab 2193   <.cop 3646   class class class wbr 4059   ` cfv 5290   1stc1st 6247   1Qc1q 7429    <Q cltq 7433   1Pc1p 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-qs 6649  df-ni 7452  df-nqqs 7496  df-ltnqqs 7501  df-i1p 7615
This theorem is referenced by:  1idprl  7738  recexprlem1ssl  7781  recexprlemss1l  7783
  Copyright terms: Public domain W3C validator