Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1stinr | GIF version |
Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
1stinr | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 6982 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉)) |
3 | opeq2 3742 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
4 | 3 | adantl 275 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) |
5 | elex 2723 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | 1on 6364 | . . . . 5 ⊢ 1o ∈ On | |
7 | opexg 4187 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → 〈1o, 𝑋〉 ∈ V) | |
8 | 6, 7 | mpan 421 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
9 | 2, 4, 5, 8 | fvmptd 5546 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
10 | 9 | fveq2d 5469 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘〈1o, 𝑋〉)) |
11 | op1stg 6092 | . . 3 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → (1st ‘〈1o, 𝑋〉) = 1o) | |
12 | 6, 11 | mpan 421 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈1o, 𝑋〉) = 1o) |
13 | 10, 12 | eqtrd 2190 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 Vcvv 2712 〈cop 3563 ↦ cmpt 4025 Oncon0 4322 ‘cfv 5167 1st c1st 6080 1oc1o 6350 inrcinr 6980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fv 5175 df-1st 6082 df-1o 6357 df-inr 6982 |
This theorem is referenced by: djune 7012 updjudhcoinrg 7015 |
Copyright terms: Public domain | W3C validator |