![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stinr | GIF version |
Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
1stinr | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 6885 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉)) |
3 | opeq2 3672 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
4 | 3 | adantl 273 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) |
5 | elex 2668 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | 1on 6274 | . . . . 5 ⊢ 1o ∈ On | |
7 | opexg 4110 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → 〈1o, 𝑋〉 ∈ V) | |
8 | 6, 7 | mpan 418 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
9 | 2, 4, 5, 8 | fvmptd 5456 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
10 | 9 | fveq2d 5379 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘〈1o, 𝑋〉)) |
11 | op1stg 6002 | . . 3 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → (1st ‘〈1o, 𝑋〉) = 1o) | |
12 | 6, 11 | mpan 418 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈1o, 𝑋〉) = 1o) |
13 | 10, 12 | eqtrd 2147 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 Vcvv 2657 〈cop 3496 ↦ cmpt 3949 Oncon0 4245 ‘cfv 5081 1st c1st 5990 1oc1o 6260 inrcinr 6883 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-suc 4253 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-iota 5046 df-fun 5083 df-fv 5089 df-1st 5992 df-1o 6267 df-inr 6885 |
This theorem is referenced by: djune 6915 updjudhcoinrg 6918 |
Copyright terms: Public domain | W3C validator |