| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stinr | GIF version | ||
| Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 1stinr | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 7215 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉)) |
| 3 | opeq2 3858 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) |
| 5 | elex 2811 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 6 | 1on 6569 | . . . . 5 ⊢ 1o ∈ On | |
| 7 | opexg 4314 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → 〈1o, 𝑋〉 ∈ V) | |
| 8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
| 9 | 2, 4, 5, 8 | fvmptd 5715 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
| 10 | 9 | fveq2d 5631 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘〈1o, 𝑋〉)) |
| 11 | op1stg 6296 | . . 3 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → (1st ‘〈1o, 𝑋〉) = 1o) | |
| 12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈1o, 𝑋〉) = 1o) |
| 13 | 10, 12 | eqtrd 2262 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ↦ cmpt 4145 Oncon0 4454 ‘cfv 5318 1st c1st 6284 1oc1o 6555 inrcinr 7213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fv 5326 df-1st 6286 df-1o 6562 df-inr 7215 |
| This theorem is referenced by: djune 7245 updjudhcoinrg 7248 |
| Copyright terms: Public domain | W3C validator |