| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stinr | GIF version | ||
| Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 1stinr | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 7150 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉)) |
| 3 | opeq2 3820 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) |
| 5 | elex 2783 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 6 | 1on 6509 | . . . . 5 ⊢ 1o ∈ On | |
| 7 | opexg 4272 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → 〈1o, 𝑋〉 ∈ V) | |
| 8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
| 9 | 2, 4, 5, 8 | fvmptd 5660 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
| 10 | 9 | fveq2d 5580 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘〈1o, 𝑋〉)) |
| 11 | op1stg 6236 | . . 3 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → (1st ‘〈1o, 𝑋〉) = 1o) | |
| 12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈1o, 𝑋〉) = 1o) |
| 13 | 10, 12 | eqtrd 2238 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 〈cop 3636 ↦ cmpt 4105 Oncon0 4410 ‘cfv 5271 1st c1st 6224 1oc1o 6495 inrcinr 7148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-1st 6226 df-1o 6502 df-inr 7150 |
| This theorem is referenced by: djune 7180 updjudhcoinrg 7183 |
| Copyright terms: Public domain | W3C validator |