ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinr GIF version

Theorem 1stinr 7178
Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)

Proof of Theorem 1stinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 7150 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
21a1i 9 . . . 4 (𝑋𝑉 → inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩))
3 opeq2 3820 . . . . 5 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
43adantl 277 . . . 4 ((𝑋𝑉𝑥 = 𝑋) → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
5 elex 2783 . . . 4 (𝑋𝑉𝑋 ∈ V)
6 1on 6509 . . . . 5 1o ∈ On
7 opexg 4272 . . . . 5 ((1o ∈ On ∧ 𝑋𝑉) → ⟨1o, 𝑋⟩ ∈ V)
86, 7mpan 424 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
92, 4, 5, 8fvmptd 5660 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
109fveq2d 5580 . 2 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘⟨1o, 𝑋⟩))
11 op1stg 6236 . . 3 ((1o ∈ On ∧ 𝑋𝑉) → (1st ‘⟨1o, 𝑋⟩) = 1o)
126, 11mpan 424 . 2 (𝑋𝑉 → (1st ‘⟨1o, 𝑋⟩) = 1o)
1310, 12eqtrd 2238 1 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  Vcvv 2772  cop 3636  cmpt 4105  Oncon0 4410  cfv 5271  1st c1st 6224  1oc1o 6495  inrcinr 7148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226  df-1o 6502  df-inr 7150
This theorem is referenced by:  djune  7180  updjudhcoinrg  7183
  Copyright terms: Public domain W3C validator