ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinr GIF version

Theorem 1stinr 7142
Description: The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)

Proof of Theorem 1stinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 7114 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
21a1i 9 . . . 4 (𝑋𝑉 → inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩))
3 opeq2 3809 . . . . 5 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
43adantl 277 . . . 4 ((𝑋𝑉𝑥 = 𝑋) → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
5 elex 2774 . . . 4 (𝑋𝑉𝑋 ∈ V)
6 1on 6481 . . . . 5 1o ∈ On
7 opexg 4261 . . . . 5 ((1o ∈ On ∧ 𝑋𝑉) → ⟨1o, 𝑋⟩ ∈ V)
86, 7mpan 424 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
92, 4, 5, 8fvmptd 5642 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
109fveq2d 5562 . 2 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = (1st ‘⟨1o, 𝑋⟩))
11 op1stg 6208 . . 3 ((1o ∈ On ∧ 𝑋𝑉) → (1st ‘⟨1o, 𝑋⟩) = 1o)
126, 11mpan 424 . 2 (𝑋𝑉 → (1st ‘⟨1o, 𝑋⟩) = 1o)
1310, 12eqtrd 2229 1 (𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cop 3625  cmpt 4094  Oncon0 4398  cfv 5258  1st c1st 6196  1oc1o 6467  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-1st 6198  df-1o 6474  df-inr 7114
This theorem is referenced by:  djune  7144  updjudhcoinrg  7147
  Copyright terms: Public domain W3C validator