ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alginv Unicode version

Theorem alginv 11521
Description: If  I is an invariant of  F, then its value is unchanged after any number of iterations of 
F. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
alginv.2  |-  F : S
--> S
alginv.3  |-  ( x  e.  S  ->  (
I `  ( F `  x ) )  =  ( I `  x
) )
Assertion
Ref Expression
alginv  |-  ( ( A  e.  S  /\  K  e.  NN0 )  -> 
( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) )
Distinct variable groups:    x, F    x, I    x, R    x, S
Allowed substitution hints:    A( x)    K( x)

Proof of Theorem alginv
Dummy variables  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 5358 . . . . 5  |-  ( z  =  0  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  0 )
) )
21eqeq1d 2108 . . . 4  |-  ( z  =  0  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  0
) )  =  ( I `  ( R `
 0 ) ) ) )
32imbi2d 229 . . 3  |-  ( z  =  0  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  0 )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
4 2fveq3 5358 . . . . 5  |-  ( z  =  k  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  k )
) )
54eqeq1d 2108 . . . 4  |-  ( z  =  k  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  k
) )  =  ( I `  ( R `
 0 ) ) ) )
65imbi2d 229 . . 3  |-  ( z  =  k  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
7 2fveq3 5358 . . . . 5  |-  ( z  =  ( k  +  1 )  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  ( k  +  1 ) ) ) )
87eqeq1d 2108 . . . 4  |-  ( z  =  ( k  +  1 )  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  (
k  +  1 ) ) )  =  ( I `  ( R `
 0 ) ) ) )
98imbi2d 229 . . 3  |-  ( z  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) ) )
10 2fveq3 5358 . . . . 5  |-  ( z  =  K  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  K )
) )
1110eqeq1d 2108 . . . 4  |-  ( z  =  K  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  K
) )  =  ( I `  ( R `
 0 ) ) ) )
1211imbi2d 229 . . 3  |-  ( z  =  K  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
13 eqidd 2101 . . 3  |-  ( A  e.  S  ->  (
I `  ( R `  0 ) )  =  ( I `  ( R `  0 ) ) )
14 nn0uz 9210 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
15 alginv.1 . . . . . . . . . 10  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
16 0zd 8918 . . . . . . . . . 10  |-  ( A  e.  S  ->  0  e.  ZZ )
17 id 19 . . . . . . . . . 10  |-  ( A  e.  S  ->  A  e.  S )
18 alginv.2 . . . . . . . . . . 11  |-  F : S
--> S
1918a1i 9 . . . . . . . . . 10  |-  ( A  e.  S  ->  F : S --> S )
2014, 15, 16, 17, 19algrp1 11520 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
2120fveq2d 5357 . . . . . . . 8  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( F `  ( R `  k ) ) ) )
2214, 15, 16, 17, 19algrf 11519 . . . . . . . . . 10  |-  ( A  e.  S  ->  R : NN0 --> S )
2322ffvelrnda 5487 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
24 2fveq3 5358 . . . . . . . . . . 11  |-  ( x  =  ( R `  k )  ->  (
I `  ( F `  x ) )  =  ( I `  ( F `  ( R `  k ) ) ) )
25 fveq2 5353 . . . . . . . . . . 11  |-  ( x  =  ( R `  k )  ->  (
I `  x )  =  ( I `  ( R `  k ) ) )
2624, 25eqeq12d 2114 . . . . . . . . . 10  |-  ( x  =  ( R `  k )  ->  (
( I `  ( F `  x )
)  =  ( I `
 x )  <->  ( I `  ( F `  ( R `  k )
) )  =  ( I `  ( R `
 k ) ) ) )
27 alginv.3 . . . . . . . . . 10  |-  ( x  e.  S  ->  (
I `  ( F `  x ) )  =  ( I `  x
) )
2826, 27vtoclga 2707 . . . . . . . . 9  |-  ( ( R `  k )  e.  S  ->  (
I `  ( F `  ( R `  k
) ) )  =  ( I `  ( R `  k )
) )
2923, 28syl 14 . . . . . . . 8  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( F `  ( R `  k ) ) )  =  ( I `  ( R `  k ) ) )
3021, 29eqtrd 2132 . . . . . . 7  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R `  k ) ) )
3130eqeq1d 2108 . . . . . 6  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  k
) )  =  ( I `  ( R `
 0 ) ) ) )
3231biimprd 157 . . . . 5  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( I `  ( R `  k ) )  =  ( I `
 ( R ` 
0 ) )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) )
3332expcom 115 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  S  ->  (
( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) ) )
3433a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  S  -> 
( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) ) )  ->  ( A  e.  S  ->  ( I `  ( R `  (
k  +  1 ) ) )  =  ( I `  ( R `
 0 ) ) ) ) )
353, 6, 9, 12, 13, 34nn0ind 9017 . 2  |-  ( K  e.  NN0  ->  ( A  e.  S  ->  (
I `  ( R `  K ) )  =  ( I `  ( R `  0 )
) ) )
3635impcom 124 1  |-  ( ( A  e.  S  /\  K  e.  NN0 )  -> 
( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   {csn 3474    X. cxp 4475    o. ccom 4481   -->wf 5055   ` cfv 5059  (class class class)co 5706   1stc1st 5967   0cc0 7500   1c1 7501    + caddc 7503   NN0cn0 8829    seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-seqfrec 10060
This theorem is referenced by:  eucalg  11533
  Copyright terms: Public domain W3C validator