ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alginv Unicode version

Theorem alginv 11958
Description: If  I is an invariant of  F, then its value is unchanged after any number of iterations of 
F. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
alginv.2  |-  F : S
--> S
alginv.3  |-  ( x  e.  S  ->  (
I `  ( F `  x ) )  =  ( I `  x
) )
Assertion
Ref Expression
alginv  |-  ( ( A  e.  S  /\  K  e.  NN0 )  -> 
( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) )
Distinct variable groups:    x, F    x, I    x, R    x, S
Allowed substitution hints:    A( x)    K( x)

Proof of Theorem alginv
Dummy variables  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 5485 . . . . 5  |-  ( z  =  0  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  0 )
) )
21eqeq1d 2173 . . . 4  |-  ( z  =  0  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  0
) )  =  ( I `  ( R `
 0 ) ) ) )
32imbi2d 229 . . 3  |-  ( z  =  0  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  0 )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
4 2fveq3 5485 . . . . 5  |-  ( z  =  k  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  k )
) )
54eqeq1d 2173 . . . 4  |-  ( z  =  k  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  k
) )  =  ( I `  ( R `
 0 ) ) ) )
65imbi2d 229 . . 3  |-  ( z  =  k  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
7 2fveq3 5485 . . . . 5  |-  ( z  =  ( k  +  1 )  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  ( k  +  1 ) ) ) )
87eqeq1d 2173 . . . 4  |-  ( z  =  ( k  +  1 )  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  (
k  +  1 ) ) )  =  ( I `  ( R `
 0 ) ) ) )
98imbi2d 229 . . 3  |-  ( z  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) ) )
10 2fveq3 5485 . . . . 5  |-  ( z  =  K  ->  (
I `  ( R `  z ) )  =  ( I `  ( R `  K )
) )
1110eqeq1d 2173 . . . 4  |-  ( z  =  K  ->  (
( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  K
) )  =  ( I `  ( R `
 0 ) ) ) )
1211imbi2d 229 . . 3  |-  ( z  =  K  ->  (
( A  e.  S  ->  ( I `  ( R `  z )
)  =  ( I `
 ( R ` 
0 ) ) )  <-> 
( A  e.  S  ->  ( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) ) ) )
13 eqidd 2165 . . 3  |-  ( A  e.  S  ->  (
I `  ( R `  0 ) )  =  ( I `  ( R `  0 ) ) )
14 nn0uz 9491 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
15 alginv.1 . . . . . . . . . 10  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
16 0zd 9194 . . . . . . . . . 10  |-  ( A  e.  S  ->  0  e.  ZZ )
17 id 19 . . . . . . . . . 10  |-  ( A  e.  S  ->  A  e.  S )
18 alginv.2 . . . . . . . . . . 11  |-  F : S
--> S
1918a1i 9 . . . . . . . . . 10  |-  ( A  e.  S  ->  F : S --> S )
2014, 15, 16, 17, 19algrp1 11957 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
2120fveq2d 5484 . . . . . . . 8  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( F `  ( R `  k ) ) ) )
2214, 15, 16, 17, 19algrf 11956 . . . . . . . . . 10  |-  ( A  e.  S  ->  R : NN0 --> S )
2322ffvelrnda 5614 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
24 2fveq3 5485 . . . . . . . . . . 11  |-  ( x  =  ( R `  k )  ->  (
I `  ( F `  x ) )  =  ( I `  ( F `  ( R `  k ) ) ) )
25 fveq2 5480 . . . . . . . . . . 11  |-  ( x  =  ( R `  k )  ->  (
I `  x )  =  ( I `  ( R `  k ) ) )
2624, 25eqeq12d 2179 . . . . . . . . . 10  |-  ( x  =  ( R `  k )  ->  (
( I `  ( F `  x )
)  =  ( I `
 x )  <->  ( I `  ( F `  ( R `  k )
) )  =  ( I `  ( R `
 k ) ) ) )
27 alginv.3 . . . . . . . . . 10  |-  ( x  e.  S  ->  (
I `  ( F `  x ) )  =  ( I `  x
) )
2826, 27vtoclga 2787 . . . . . . . . 9  |-  ( ( R `  k )  e.  S  ->  (
I `  ( F `  ( R `  k
) ) )  =  ( I `  ( R `  k )
) )
2923, 28syl 14 . . . . . . . 8  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( F `  ( R `  k ) ) )  =  ( I `  ( R `  k ) ) )
3021, 29eqtrd 2197 . . . . . . 7  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R `  k ) ) )
3130eqeq1d 2173 . . . . . 6  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) )  <->  ( I `  ( R `  k
) )  =  ( I `  ( R `
 0 ) ) ) )
3231biimprd 157 . . . . 5  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( I `  ( R `  k ) )  =  ( I `
 ( R ` 
0 ) )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) )
3332expcom 115 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  S  ->  (
( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) )  -> 
( I `  ( R `  ( k  +  1 ) ) )  =  ( I `
 ( R ` 
0 ) ) ) ) )
3433a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  S  -> 
( I `  ( R `  k )
)  =  ( I `
 ( R ` 
0 ) ) )  ->  ( A  e.  S  ->  ( I `  ( R `  (
k  +  1 ) ) )  =  ( I `  ( R `
 0 ) ) ) ) )
353, 6, 9, 12, 13, 34nn0ind 9296 . 2  |-  ( K  e.  NN0  ->  ( A  e.  S  ->  (
I `  ( R `  K ) )  =  ( I `  ( R `  0 )
) ) )
3635impcom 124 1  |-  ( ( A  e.  S  /\  K  e.  NN0 )  -> 
( I `  ( R `  K )
)  =  ( I `
 ( R ` 
0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   {csn 3570    X. cxp 4596    o. ccom 4602   -->wf 5178   ` cfv 5182  (class class class)co 5836   1stc1st 6098   0cc0 7744   1c1 7745    + caddc 7747   NN0cn0 9105    seqcseq 10370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371
This theorem is referenced by:  eucalg  11970
  Copyright terms: Public domain W3C validator