Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3homo | Unicode version |
Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.) |
Ref | Expression |
---|---|
seq3homo.1 | |
seq3homo.2 | |
seq3homo.3 | |
seq3homo.4 | |
seq3homo.5 | |
seq3homo.g | |
seq3homo.qcl |
Ref | Expression |
---|---|
seq3homo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3homo.3 | . 2 | |
2 | 2fveq3 5473 | . . . . 5 | |
3 | fveq2 5468 | . . . . 5 | |
4 | 2, 3 | eqeq12d 2172 | . . . 4 |
5 | 4 | imbi2d 229 | . . 3 |
6 | 2fveq3 5473 | . . . . 5 | |
7 | fveq2 5468 | . . . . 5 | |
8 | 6, 7 | eqeq12d 2172 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | 2fveq3 5473 | . . . . 5 | |
11 | fveq2 5468 | . . . . 5 | |
12 | 10, 11 | eqeq12d 2172 | . . . 4 |
13 | 12 | imbi2d 229 | . . 3 |
14 | 2fveq3 5473 | . . . . 5 | |
15 | fveq2 5468 | . . . . 5 | |
16 | 14, 15 | eqeq12d 2172 | . . . 4 |
17 | 16 | imbi2d 229 | . . 3 |
18 | 2fveq3 5473 | . . . . . . 7 | |
19 | fveq2 5468 | . . . . . . 7 | |
20 | 18, 19 | eqeq12d 2172 | . . . . . 6 |
21 | seq3homo.5 | . . . . . . 7 | |
22 | 21 | ralrimiva 2530 | . . . . . 6 |
23 | eluzel2 9444 | . . . . . . . 8 | |
24 | 1, 23 | syl 14 | . . . . . . 7 |
25 | uzid 9453 | . . . . . . 7 | |
26 | 24, 25 | syl 14 | . . . . . 6 |
27 | 20, 22, 26 | rspcdva 2821 | . . . . 5 |
28 | seq3homo.2 | . . . . . . 7 | |
29 | seq3homo.1 | . . . . . . 7 | |
30 | 24, 28, 29 | seq3-1 10359 | . . . . . 6 |
31 | 30 | fveq2d 5472 | . . . . 5 |
32 | seq3homo.g | . . . . . 6 | |
33 | seq3homo.qcl | . . . . . 6 | |
34 | 24, 32, 33 | seq3-1 10359 | . . . . 5 |
35 | 27, 31, 34 | 3eqtr4d 2200 | . . . 4 |
36 | 35 | a1i 9 | . . 3 |
37 | oveq1 5831 | . . . . . 6 | |
38 | simpr 109 | . . . . . . . . . 10 | |
39 | 28 | adantlr 469 | . . . . . . . . . 10 |
40 | 29 | adantlr 469 | . . . . . . . . . 10 |
41 | 38, 39, 40 | seq3p1 10361 | . . . . . . . . 9 |
42 | 41 | fveq2d 5472 | . . . . . . . 8 |
43 | seq3homo.4 | . . . . . . . . . . 11 | |
44 | 43 | ralrimivva 2539 | . . . . . . . . . 10 |
45 | 44 | adantr 274 | . . . . . . . . 9 |
46 | eqid 2157 | . . . . . . . . . . . 12 | |
47 | 46, 24, 28, 29 | seqf 10360 | . . . . . . . . . . 11 |
48 | 47 | ffvelrnda 5602 | . . . . . . . . . 10 |
49 | fveq2 5468 | . . . . . . . . . . . 12 | |
50 | 49 | eleq1d 2226 | . . . . . . . . . . 11 |
51 | 28 | ralrimiva 2530 | . . . . . . . . . . . 12 |
52 | 51 | adantr 274 | . . . . . . . . . . 11 |
53 | peano2uz 9494 | . . . . . . . . . . . 12 | |
54 | 38, 53 | syl 14 | . . . . . . . . . . 11 |
55 | 50, 52, 54 | rspcdva 2821 | . . . . . . . . . 10 |
56 | oveq1 5831 | . . . . . . . . . . . . 13 | |
57 | 56 | fveq2d 5472 | . . . . . . . . . . . 12 |
58 | fveq2 5468 | . . . . . . . . . . . . 13 | |
59 | 58 | oveq1d 5839 | . . . . . . . . . . . 12 |
60 | 57, 59 | eqeq12d 2172 | . . . . . . . . . . 11 |
61 | oveq2 5832 | . . . . . . . . . . . . 13 | |
62 | 61 | fveq2d 5472 | . . . . . . . . . . . 12 |
63 | fveq2 5468 | . . . . . . . . . . . . 13 | |
64 | 63 | oveq2d 5840 | . . . . . . . . . . . 12 |
65 | 62, 64 | eqeq12d 2172 | . . . . . . . . . . 11 |
66 | 60, 65 | rspc2v 2829 | . . . . . . . . . 10 |
67 | 48, 55, 66 | syl2anc 409 | . . . . . . . . 9 |
68 | 45, 67 | mpd 13 | . . . . . . . 8 |
69 | 2fveq3 5473 | . . . . . . . . . . 11 | |
70 | fveq2 5468 | . . . . . . . . . . 11 | |
71 | 69, 70 | eqeq12d 2172 | . . . . . . . . . 10 |
72 | 22 | adantr 274 | . . . . . . . . . 10 |
73 | 71, 72, 54 | rspcdva 2821 | . . . . . . . . 9 |
74 | 73 | oveq2d 5840 | . . . . . . . 8 |
75 | 42, 68, 74 | 3eqtrd 2194 | . . . . . . 7 |
76 | 32 | adantlr 469 | . . . . . . . 8 |
77 | 33 | adantlr 469 | . . . . . . . 8 |
78 | 38, 76, 77 | seq3p1 10361 | . . . . . . 7 |
79 | 75, 78 | eqeq12d 2172 | . . . . . 6 |
80 | 37, 79 | syl5ibr 155 | . . . . 5 |
81 | 80 | expcom 115 | . . . 4 |
82 | 81 | a2d 26 | . . 3 |
83 | 5, 9, 13, 17, 36, 82 | uzind4 9499 | . 2 |
84 | 1, 83 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 cfv 5170 (class class class)co 5824 c1 7733 caddc 7735 cz 9167 cuz 9439 cseq 10344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-frec 6338 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-inn 8834 df-n0 9091 df-z 9168 df-uz 9440 df-seqfrec 10345 |
This theorem is referenced by: seqfeq3 10411 seq3distr 10412 efcj 11570 |
Copyright terms: Public domain | W3C validator |