ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3homo Unicode version

Theorem seq3homo 10709
Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
seq3homo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3homo.2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3homo.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3homo.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( H `  (
x  .+  y )
)  =  ( ( H `  x ) Q ( H `  y ) ) )
seq3homo.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  x
) )  =  ( G `  x ) )
seq3homo.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
seq3homo.qcl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
Assertion
Ref Expression
seq3homo  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) )
Distinct variable groups:    x, y, F   
x, H, y    x, M, y    x, N, y    ph, x, y    x, G   
x,  .+ , y    x, Q, y    x, S, y   
y, G

Proof of Theorem seq3homo
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3homo.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 2fveq3 5604 . . . . 5  |-  ( w  =  M  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  M
) ) )
3 fveq2 5599 . . . . 5  |-  ( w  =  M  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  M
) )
42, 3eqeq12d 2222 . . . 4  |-  ( w  =  M  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 M ) )  =  (  seq M
( Q ,  G
) `  M )
) )
54imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  (  seq M ( Q ,  G ) `  M ) ) ) )
6 2fveq3 5604 . . . . 5  |-  ( w  =  n  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  n
) ) )
7 fveq2 5599 . . . . 5  |-  ( w  =  n  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  n
) )
86, 7eqeq12d 2222 . . . 4  |-  ( w  =  n  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 n ) )  =  (  seq M
( Q ,  G
) `  n )
) )
98imbi2d 230 . . 3  |-  ( w  =  n  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n ) ) ) )
10 2fveq3 5604 . . . . 5  |-  ( w  =  ( n  + 
1 )  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) )
11 fveq2 5599 . . . . 5  |-  ( w  =  ( n  + 
1 )  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  (
n  +  1 ) ) )
1210, 11eqeq12d 2222 . . . 4  |-  ( w  =  ( n  + 
1 )  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) )  =  (  seq M
( Q ,  G
) `  ( n  +  1 ) ) ) )
1312imbi2d 230 . . 3  |-  ( w  =  ( n  + 
1 )  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) ) ) ) )
14 2fveq3 5604 . . . . 5  |-  ( w  =  N  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  N
) ) )
15 fveq2 5599 . . . . 5  |-  ( w  =  N  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  N
) )
1614, 15eqeq12d 2222 . . . 4  |-  ( w  =  N  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 N ) )  =  (  seq M
( Q ,  G
) `  N )
) )
1716imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) ) ) )
18 2fveq3 5604 . . . . . . 7  |-  ( x  =  M  ->  ( H `  ( F `  x ) )  =  ( H `  ( F `  M )
) )
19 fveq2 5599 . . . . . . 7  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
2018, 19eqeq12d 2222 . . . . . 6  |-  ( x  =  M  ->  (
( H `  ( F `  x )
)  =  ( G `
 x )  <->  ( H `  ( F `  M
) )  =  ( G `  M ) ) )
21 seq3homo.5 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  x
) )  =  ( G `  x ) )
2221ralrimiva 2581 . . . . . 6  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( H `  ( F `
 x ) )  =  ( G `  x ) )
23 eluzel2 9688 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
241, 23syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
25 uzid 9697 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2624, 25syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
2720, 22, 26rspcdva 2889 . . . . 5  |-  ( ph  ->  ( H `  ( F `  M )
)  =  ( G `
 M ) )
28 seq3homo.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
29 seq3homo.1 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3024, 28, 29seq3-1 10644 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
3130fveq2d 5603 . . . . 5  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  ( H `  ( F `
 M ) ) )
32 seq3homo.g . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
33 seq3homo.qcl . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
3424, 32, 33seq3-1 10644 . . . . 5  |-  ( ph  ->  (  seq M ( Q ,  G ) `
 M )  =  ( G `  M
) )
3527, 31, 343eqtr4d 2250 . . . 4  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  (  seq M ( Q ,  G ) `  M ) )
3635a1i 9 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  (  seq M ( Q ,  G ) `  M ) ) )
37 oveq1 5974 . . . . . 6  |-  ( ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n )  ->  (
( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( G `  ( n  +  1 ) ) )  =  ( (  seq M ( Q ,  G ) `  n ) Q ( G `  ( n  +  1 ) ) ) )
38 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
3928adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4029adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4138, 39, 40seq3p1 10647 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
4241fveq2d 5603 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) )  =  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
43 seq3homo.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( H `  (
x  .+  y )
)  =  ( ( H `  x ) Q ( H `  y ) ) )
4443ralrimivva 2590 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( H `  ( x 
.+  y ) )  =  ( ( H `
 x ) Q ( H `  y
) ) )
4544adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  A. x  e.  S  A. y  e.  S  ( H `  ( x  .+  y
) )  =  ( ( H `  x
) Q ( H `
 y ) ) )
46 eqid 2207 . . . . . . . . . . . 12  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
4746, 24, 28, 29seqf 10646 . . . . . . . . . . 11  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
4847ffvelcdmda 5738 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  S )
49 fveq2 5599 . . . . . . . . . . . 12  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
5049eleq1d 2276 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
5128ralrimiva 2581 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
5251adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
53 peano2uz 9739 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
5438, 53syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
5550, 52, 54rspcdva 2889 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  ( n  +  1 ) )  e.  S
)
56 oveq1 5974 . . . . . . . . . . . . 13  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x  .+  y
)  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)
5756fveq2d 5603 . . . . . . . . . . . 12  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( H `  (
x  .+  y )
)  =  ( H `
 ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
) )
58 fveq2 5599 . . . . . . . . . . . . 13  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( H `  x
)  =  ( H `
 (  seq M
(  .+  ,  F
) `  n )
) )
5958oveq1d 5982 . . . . . . . . . . . 12  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( H `  x ) Q ( H `  y ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) ) )
6057, 59eqeq12d 2222 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( H `  ( x  .+  y ) )  =  ( ( H `  x ) Q ( H `  y ) )  <->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  y ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) ) ) )
61 oveq2 5975 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6261fveq2d 5603 . . . . . . . . . . . 12  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( H `  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)  =  ( H `
 ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) ) )
63 fveq2 5599 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( H `  y )  =  ( H `  ( F `  ( n  +  1 ) ) ) )
6463oveq2d 5983 . . . . . . . . . . . 12  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) )
6562, 64eqeq12d 2222 . . . . . . . . . . 11  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( H `  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )
)  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) )  <->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) ) )
6660, 65rspc2v 2897 . . . . . . . . . 10  |-  ( ( (  seq M ( 
.+  ,  F ) `
 n )  e.  S  /\  ( F `
 ( n  + 
1 ) )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( H `  ( x 
.+  y ) )  =  ( ( H `
 x ) Q ( H `  y
) )  ->  ( H `  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )  =  ( ( H `
 (  seq M
(  .+  ,  F
) `  n )
) Q ( H `
 ( F `  ( n  +  1
) ) ) ) ) )
6748, 55, 66syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( A. x  e.  S  A. y  e.  S  ( H `  ( x  .+  y ) )  =  ( ( H `  x ) Q ( H `  y ) )  ->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) ) )
6845, 67mpd 13 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) )
69 2fveq3 5604 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  ( H `  ( F `  x ) )  =  ( H `  ( F `  ( n  +  1 ) ) ) )
70 fveq2 5599 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  ( G `  x )  =  ( G `  ( n  +  1
) ) )
7169, 70eqeq12d 2222 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( H `  ( F `  x )
)  =  ( G `
 x )  <->  ( H `  ( F `  (
n  +  1 ) ) )  =  ( G `  ( n  +  1 ) ) ) )
7222adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  A. x  e.  ( ZZ>= `  M )
( H `  ( F `  x )
)  =  ( G `
 x ) )
7371, 72, 54rspcdva 2889 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  (
n  +  1 ) ) )  =  ( G `  ( n  +  1 ) ) )
7473oveq2d 5983 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( G `  ( n  +  1 ) ) ) )
7542, 68, 743eqtrd 2244 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) )  =  ( ( H `
 (  seq M
(  .+  ,  F
) `  n )
) Q ( G `
 ( n  + 
1 ) ) ) )
7632adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
7733adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
7838, 76, 77seq3p1 10647 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M ( Q ,  G ) `  (
n  +  1 ) )  =  ( (  seq M ( Q ,  G ) `  n ) Q ( G `  ( n  +  1 ) ) ) )
7975, 78eqeq12d 2222 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) )  <->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( G `  ( n  +  1 ) ) )  =  ( (  seq M ( Q ,  G ) `  n ) Q ( G `  ( n  +  1 ) ) ) ) )
8037, 79imbitrrid 156 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n )  ->  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) ) ) )
8180expcom 116 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n )  ->  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) ) ) ) )
8281a2d 26 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n ) )  -> 
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  ( n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  (
n  +  1 ) ) ) ) )
835, 9, 13, 17, 36, 82uzind4 9744 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) ) )
841, 83mpcom 36 1  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by:  seqfeq3  10711  seq3distr  10714  efcj  12099
  Copyright terms: Public domain W3C validator