Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3homo | Unicode version |
Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.) |
Ref | Expression |
---|---|
seq3homo.1 | |
seq3homo.2 | |
seq3homo.3 | |
seq3homo.4 | |
seq3homo.5 | |
seq3homo.g | |
seq3homo.qcl |
Ref | Expression |
---|---|
seq3homo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3homo.3 | . 2 | |
2 | 2fveq3 5501 | . . . . 5 | |
3 | fveq2 5496 | . . . . 5 | |
4 | 2, 3 | eqeq12d 2185 | . . . 4 |
5 | 4 | imbi2d 229 | . . 3 |
6 | 2fveq3 5501 | . . . . 5 | |
7 | fveq2 5496 | . . . . 5 | |
8 | 6, 7 | eqeq12d 2185 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | 2fveq3 5501 | . . . . 5 | |
11 | fveq2 5496 | . . . . 5 | |
12 | 10, 11 | eqeq12d 2185 | . . . 4 |
13 | 12 | imbi2d 229 | . . 3 |
14 | 2fveq3 5501 | . . . . 5 | |
15 | fveq2 5496 | . . . . 5 | |
16 | 14, 15 | eqeq12d 2185 | . . . 4 |
17 | 16 | imbi2d 229 | . . 3 |
18 | 2fveq3 5501 | . . . . . . 7 | |
19 | fveq2 5496 | . . . . . . 7 | |
20 | 18, 19 | eqeq12d 2185 | . . . . . 6 |
21 | seq3homo.5 | . . . . . . 7 | |
22 | 21 | ralrimiva 2543 | . . . . . 6 |
23 | eluzel2 9492 | . . . . . . . 8 | |
24 | 1, 23 | syl 14 | . . . . . . 7 |
25 | uzid 9501 | . . . . . . 7 | |
26 | 24, 25 | syl 14 | . . . . . 6 |
27 | 20, 22, 26 | rspcdva 2839 | . . . . 5 |
28 | seq3homo.2 | . . . . . . 7 | |
29 | seq3homo.1 | . . . . . . 7 | |
30 | 24, 28, 29 | seq3-1 10416 | . . . . . 6 |
31 | 30 | fveq2d 5500 | . . . . 5 |
32 | seq3homo.g | . . . . . 6 | |
33 | seq3homo.qcl | . . . . . 6 | |
34 | 24, 32, 33 | seq3-1 10416 | . . . . 5 |
35 | 27, 31, 34 | 3eqtr4d 2213 | . . . 4 |
36 | 35 | a1i 9 | . . 3 |
37 | oveq1 5860 | . . . . . 6 | |
38 | simpr 109 | . . . . . . . . . 10 | |
39 | 28 | adantlr 474 | . . . . . . . . . 10 |
40 | 29 | adantlr 474 | . . . . . . . . . 10 |
41 | 38, 39, 40 | seq3p1 10418 | . . . . . . . . 9 |
42 | 41 | fveq2d 5500 | . . . . . . . 8 |
43 | seq3homo.4 | . . . . . . . . . . 11 | |
44 | 43 | ralrimivva 2552 | . . . . . . . . . 10 |
45 | 44 | adantr 274 | . . . . . . . . 9 |
46 | eqid 2170 | . . . . . . . . . . . 12 | |
47 | 46, 24, 28, 29 | seqf 10417 | . . . . . . . . . . 11 |
48 | 47 | ffvelrnda 5631 | . . . . . . . . . 10 |
49 | fveq2 5496 | . . . . . . . . . . . 12 | |
50 | 49 | eleq1d 2239 | . . . . . . . . . . 11 |
51 | 28 | ralrimiva 2543 | . . . . . . . . . . . 12 |
52 | 51 | adantr 274 | . . . . . . . . . . 11 |
53 | peano2uz 9542 | . . . . . . . . . . . 12 | |
54 | 38, 53 | syl 14 | . . . . . . . . . . 11 |
55 | 50, 52, 54 | rspcdva 2839 | . . . . . . . . . 10 |
56 | oveq1 5860 | . . . . . . . . . . . . 13 | |
57 | 56 | fveq2d 5500 | . . . . . . . . . . . 12 |
58 | fveq2 5496 | . . . . . . . . . . . . 13 | |
59 | 58 | oveq1d 5868 | . . . . . . . . . . . 12 |
60 | 57, 59 | eqeq12d 2185 | . . . . . . . . . . 11 |
61 | oveq2 5861 | . . . . . . . . . . . . 13 | |
62 | 61 | fveq2d 5500 | . . . . . . . . . . . 12 |
63 | fveq2 5496 | . . . . . . . . . . . . 13 | |
64 | 63 | oveq2d 5869 | . . . . . . . . . . . 12 |
65 | 62, 64 | eqeq12d 2185 | . . . . . . . . . . 11 |
66 | 60, 65 | rspc2v 2847 | . . . . . . . . . 10 |
67 | 48, 55, 66 | syl2anc 409 | . . . . . . . . 9 |
68 | 45, 67 | mpd 13 | . . . . . . . 8 |
69 | 2fveq3 5501 | . . . . . . . . . . 11 | |
70 | fveq2 5496 | . . . . . . . . . . 11 | |
71 | 69, 70 | eqeq12d 2185 | . . . . . . . . . 10 |
72 | 22 | adantr 274 | . . . . . . . . . 10 |
73 | 71, 72, 54 | rspcdva 2839 | . . . . . . . . 9 |
74 | 73 | oveq2d 5869 | . . . . . . . 8 |
75 | 42, 68, 74 | 3eqtrd 2207 | . . . . . . 7 |
76 | 32 | adantlr 474 | . . . . . . . 8 |
77 | 33 | adantlr 474 | . . . . . . . 8 |
78 | 38, 76, 77 | seq3p1 10418 | . . . . . . 7 |
79 | 75, 78 | eqeq12d 2185 | . . . . . 6 |
80 | 37, 79 | syl5ibr 155 | . . . . 5 |
81 | 80 | expcom 115 | . . . 4 |
82 | 81 | a2d 26 | . . 3 |
83 | 5, 9, 13, 17, 36, 82 | uzind4 9547 | . 2 |
84 | 1, 83 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cfv 5198 (class class class)co 5853 c1 7775 caddc 7777 cz 9212 cuz 9487 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 |
This theorem is referenced by: seqfeq3 10468 seq3distr 10469 efcj 11636 |
Copyright terms: Public domain | W3C validator |