| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3homo | Unicode version | ||
| Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3homo.1 |
|
| seq3homo.2 |
|
| seq3homo.3 |
|
| seq3homo.4 |
|
| seq3homo.5 |
|
| seq3homo.g |
|
| seq3homo.qcl |
|
| Ref | Expression |
|---|---|
| seq3homo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3homo.3 |
. 2
| |
| 2 | 2fveq3 5632 |
. . . . 5
| |
| 3 | fveq2 5627 |
. . . . 5
| |
| 4 | 2, 3 | eqeq12d 2244 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | 2fveq3 5632 |
. . . . 5
| |
| 7 | fveq2 5627 |
. . . . 5
| |
| 8 | 6, 7 | eqeq12d 2244 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | 2fveq3 5632 |
. . . . 5
| |
| 11 | fveq2 5627 |
. . . . 5
| |
| 12 | 10, 11 | eqeq12d 2244 |
. . . 4
|
| 13 | 12 | imbi2d 230 |
. . 3
|
| 14 | 2fveq3 5632 |
. . . . 5
| |
| 15 | fveq2 5627 |
. . . . 5
| |
| 16 | 14, 15 | eqeq12d 2244 |
. . . 4
|
| 17 | 16 | imbi2d 230 |
. . 3
|
| 18 | 2fveq3 5632 |
. . . . . . 7
| |
| 19 | fveq2 5627 |
. . . . . . 7
| |
| 20 | 18, 19 | eqeq12d 2244 |
. . . . . 6
|
| 21 | seq3homo.5 |
. . . . . . 7
| |
| 22 | 21 | ralrimiva 2603 |
. . . . . 6
|
| 23 | eluzel2 9727 |
. . . . . . . 8
| |
| 24 | 1, 23 | syl 14 |
. . . . . . 7
|
| 25 | uzid 9736 |
. . . . . . 7
| |
| 26 | 24, 25 | syl 14 |
. . . . . 6
|
| 27 | 20, 22, 26 | rspcdva 2912 |
. . . . 5
|
| 28 | seq3homo.2 |
. . . . . . 7
| |
| 29 | seq3homo.1 |
. . . . . . 7
| |
| 30 | 24, 28, 29 | seq3-1 10684 |
. . . . . 6
|
| 31 | 30 | fveq2d 5631 |
. . . . 5
|
| 32 | seq3homo.g |
. . . . . 6
| |
| 33 | seq3homo.qcl |
. . . . . 6
| |
| 34 | 24, 32, 33 | seq3-1 10684 |
. . . . 5
|
| 35 | 27, 31, 34 | 3eqtr4d 2272 |
. . . 4
|
| 36 | 35 | a1i 9 |
. . 3
|
| 37 | oveq1 6008 |
. . . . . 6
| |
| 38 | simpr 110 |
. . . . . . . . . 10
| |
| 39 | 28 | adantlr 477 |
. . . . . . . . . 10
|
| 40 | 29 | adantlr 477 |
. . . . . . . . . 10
|
| 41 | 38, 39, 40 | seq3p1 10687 |
. . . . . . . . 9
|
| 42 | 41 | fveq2d 5631 |
. . . . . . . 8
|
| 43 | seq3homo.4 |
. . . . . . . . . . 11
| |
| 44 | 43 | ralrimivva 2612 |
. . . . . . . . . 10
|
| 45 | 44 | adantr 276 |
. . . . . . . . 9
|
| 46 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 47 | 46, 24, 28, 29 | seqf 10686 |
. . . . . . . . . . 11
|
| 48 | 47 | ffvelcdmda 5770 |
. . . . . . . . . 10
|
| 49 | fveq2 5627 |
. . . . . . . . . . . 12
| |
| 50 | 49 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 51 | 28 | ralrimiva 2603 |
. . . . . . . . . . . 12
|
| 52 | 51 | adantr 276 |
. . . . . . . . . . 11
|
| 53 | peano2uz 9778 |
. . . . . . . . . . . 12
| |
| 54 | 38, 53 | syl 14 |
. . . . . . . . . . 11
|
| 55 | 50, 52, 54 | rspcdva 2912 |
. . . . . . . . . 10
|
| 56 | oveq1 6008 |
. . . . . . . . . . . . 13
| |
| 57 | 56 | fveq2d 5631 |
. . . . . . . . . . . 12
|
| 58 | fveq2 5627 |
. . . . . . . . . . . . 13
| |
| 59 | 58 | oveq1d 6016 |
. . . . . . . . . . . 12
|
| 60 | 57, 59 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 61 | oveq2 6009 |
. . . . . . . . . . . . 13
| |
| 62 | 61 | fveq2d 5631 |
. . . . . . . . . . . 12
|
| 63 | fveq2 5627 |
. . . . . . . . . . . . 13
| |
| 64 | 63 | oveq2d 6017 |
. . . . . . . . . . . 12
|
| 65 | 62, 64 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 66 | 60, 65 | rspc2v 2920 |
. . . . . . . . . 10
|
| 67 | 48, 55, 66 | syl2anc 411 |
. . . . . . . . 9
|
| 68 | 45, 67 | mpd 13 |
. . . . . . . 8
|
| 69 | 2fveq3 5632 |
. . . . . . . . . . 11
| |
| 70 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 71 | 69, 70 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 72 | 22 | adantr 276 |
. . . . . . . . . 10
|
| 73 | 71, 72, 54 | rspcdva 2912 |
. . . . . . . . 9
|
| 74 | 73 | oveq2d 6017 |
. . . . . . . 8
|
| 75 | 42, 68, 74 | 3eqtrd 2266 |
. . . . . . 7
|
| 76 | 32 | adantlr 477 |
. . . . . . . 8
|
| 77 | 33 | adantlr 477 |
. . . . . . . 8
|
| 78 | 38, 76, 77 | seq3p1 10687 |
. . . . . . 7
|
| 79 | 75, 78 | eqeq12d 2244 |
. . . . . 6
|
| 80 | 37, 79 | imbitrrid 156 |
. . . . 5
|
| 81 | 80 | expcom 116 |
. . . 4
|
| 82 | 81 | a2d 26 |
. . 3
|
| 83 | 5, 9, 13, 17, 36, 82 | uzind4 9783 |
. 2
|
| 84 | 1, 83 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 |
| This theorem is referenced by: seqfeq3 10751 seq3distr 10754 efcj 12184 |
| Copyright terms: Public domain | W3C validator |