ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3homo Unicode version

Theorem seq3homo 10445
Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
seq3homo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3homo.2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3homo.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3homo.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( H `  (
x  .+  y )
)  =  ( ( H `  x ) Q ( H `  y ) ) )
seq3homo.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  x
) )  =  ( G `  x ) )
seq3homo.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
seq3homo.qcl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
Assertion
Ref Expression
seq3homo  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) )
Distinct variable groups:    x, y, F   
x, H, y    x, M, y    x, N, y    ph, x, y    x, G   
x,  .+ , y    x, Q, y    x, S, y   
y, G

Proof of Theorem seq3homo
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3homo.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 2fveq3 5491 . . . . 5  |-  ( w  =  M  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  M
) ) )
3 fveq2 5486 . . . . 5  |-  ( w  =  M  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  M
) )
42, 3eqeq12d 2180 . . . 4  |-  ( w  =  M  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 M ) )  =  (  seq M
( Q ,  G
) `  M )
) )
54imbi2d 229 . . 3  |-  ( w  =  M  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  (  seq M ( Q ,  G ) `  M ) ) ) )
6 2fveq3 5491 . . . . 5  |-  ( w  =  n  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  n
) ) )
7 fveq2 5486 . . . . 5  |-  ( w  =  n  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  n
) )
86, 7eqeq12d 2180 . . . 4  |-  ( w  =  n  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 n ) )  =  (  seq M
( Q ,  G
) `  n )
) )
98imbi2d 229 . . 3  |-  ( w  =  n  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n ) ) ) )
10 2fveq3 5491 . . . . 5  |-  ( w  =  ( n  + 
1 )  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) )
11 fveq2 5486 . . . . 5  |-  ( w  =  ( n  + 
1 )  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  (
n  +  1 ) ) )
1210, 11eqeq12d 2180 . . . 4  |-  ( w  =  ( n  + 
1 )  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) )  =  (  seq M
( Q ,  G
) `  ( n  +  1 ) ) ) )
1312imbi2d 229 . . 3  |-  ( w  =  ( n  + 
1 )  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) ) ) ) )
14 2fveq3 5491 . . . . 5  |-  ( w  =  N  ->  ( H `  (  seq M (  .+  ,  F ) `  w
) )  =  ( H `  (  seq M (  .+  ,  F ) `  N
) ) )
15 fveq2 5486 . . . . 5  |-  ( w  =  N  ->  (  seq M ( Q ,  G ) `  w
)  =  (  seq M ( Q ,  G ) `  N
) )
1614, 15eqeq12d 2180 . . . 4  |-  ( w  =  N  ->  (
( H `  (  seq M (  .+  ,  F ) `  w
) )  =  (  seq M ( Q ,  G ) `  w )  <->  ( H `  (  seq M ( 
.+  ,  F ) `
 N ) )  =  (  seq M
( Q ,  G
) `  N )
) )
1716imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  w )
)  =  (  seq M ( Q ,  G ) `  w
) )  <->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) ) ) )
18 2fveq3 5491 . . . . . . 7  |-  ( x  =  M  ->  ( H `  ( F `  x ) )  =  ( H `  ( F `  M )
) )
19 fveq2 5486 . . . . . . 7  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
2018, 19eqeq12d 2180 . . . . . 6  |-  ( x  =  M  ->  (
( H `  ( F `  x )
)  =  ( G `
 x )  <->  ( H `  ( F `  M
) )  =  ( G `  M ) ) )
21 seq3homo.5 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  x
) )  =  ( G `  x ) )
2221ralrimiva 2539 . . . . . 6  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( H `  ( F `
 x ) )  =  ( G `  x ) )
23 eluzel2 9471 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
241, 23syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
25 uzid 9480 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2624, 25syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
2720, 22, 26rspcdva 2835 . . . . 5  |-  ( ph  ->  ( H `  ( F `  M )
)  =  ( G `
 M ) )
28 seq3homo.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
29 seq3homo.1 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3024, 28, 29seq3-1 10395 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
3130fveq2d 5490 . . . . 5  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  ( H `  ( F `
 M ) ) )
32 seq3homo.g . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
33 seq3homo.qcl . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
3424, 32, 33seq3-1 10395 . . . . 5  |-  ( ph  ->  (  seq M ( Q ,  G ) `
 M )  =  ( G `  M
) )
3527, 31, 343eqtr4d 2208 . . . 4  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  (  seq M ( Q ,  G ) `  M ) )
3635a1i 9 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  M
) )  =  (  seq M ( Q ,  G ) `  M ) ) )
37 oveq1 5849 . . . . . 6  |-  ( ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n )  ->  (
( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( G `  ( n  +  1 ) ) )  =  ( (  seq M ( Q ,  G ) `  n ) Q ( G `  ( n  +  1 ) ) ) )
38 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
3928adantlr 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4029adantlr 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4138, 39, 40seq3p1 10397 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
4241fveq2d 5490 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) )  =  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
43 seq3homo.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( H `  (
x  .+  y )
)  =  ( ( H `  x ) Q ( H `  y ) ) )
4443ralrimivva 2548 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( H `  ( x 
.+  y ) )  =  ( ( H `
 x ) Q ( H `  y
) ) )
4544adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  A. x  e.  S  A. y  e.  S  ( H `  ( x  .+  y
) )  =  ( ( H `  x
) Q ( H `
 y ) ) )
46 eqid 2165 . . . . . . . . . . . 12  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
4746, 24, 28, 29seqf 10396 . . . . . . . . . . 11  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
4847ffvelrnda 5620 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  n
)  e.  S )
49 fveq2 5486 . . . . . . . . . . . 12  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
5049eleq1d 2235 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
5128ralrimiva 2539 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
5251adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
53 peano2uz 9521 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
5438, 53syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
5550, 52, 54rspcdva 2835 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  ( n  +  1 ) )  e.  S
)
56 oveq1 5849 . . . . . . . . . . . . 13  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x  .+  y
)  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)
5756fveq2d 5490 . . . . . . . . . . . 12  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( H `  (
x  .+  y )
)  =  ( H `
 ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
) )
58 fveq2 5486 . . . . . . . . . . . . 13  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( H `  x
)  =  ( H `
 (  seq M
(  .+  ,  F
) `  n )
) )
5958oveq1d 5857 . . . . . . . . . . . 12  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( H `  x ) Q ( H `  y ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) ) )
6057, 59eqeq12d 2180 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( H `  ( x  .+  y ) )  =  ( ( H `  x ) Q ( H `  y ) )  <->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  y ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) ) ) )
61 oveq2 5850 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6261fveq2d 5490 . . . . . . . . . . . 12  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( H `  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)  =  ( H `
 ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) ) )
63 fveq2 5486 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( H `  y )  =  ( H `  ( F `  ( n  +  1 ) ) ) )
6463oveq2d 5858 . . . . . . . . . . . 12  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) )
6562, 64eqeq12d 2180 . . . . . . . . . . 11  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( H `  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )
)  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  y ) )  <->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) ) )
6660, 65rspc2v 2843 . . . . . . . . . 10  |-  ( ( (  seq M ( 
.+  ,  F ) `
 n )  e.  S  /\  ( F `
 ( n  + 
1 ) )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( H `  ( x 
.+  y ) )  =  ( ( H `
 x ) Q ( H `  y
) )  ->  ( H `  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )  =  ( ( H `
 (  seq M
(  .+  ,  F
) `  n )
) Q ( H `
 ( F `  ( n  +  1
) ) ) ) ) )
6748, 55, 66syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( A. x  e.  S  A. y  e.  S  ( H `  ( x  .+  y ) )  =  ( ( H `  x ) Q ( H `  y ) )  ->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) ) )
6845, 67mpd 13 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) ) )
69 2fveq3 5491 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  ( H `  ( F `  x ) )  =  ( H `  ( F `  ( n  +  1 ) ) ) )
70 fveq2 5486 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  ( G `  x )  =  ( G `  ( n  +  1
) ) )
7169, 70eqeq12d 2180 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( H `  ( F `  x )
)  =  ( G `
 x )  <->  ( H `  ( F `  (
n  +  1 ) ) )  =  ( G `  ( n  +  1 ) ) ) )
7222adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  A. x  e.  ( ZZ>= `  M )
( H `  ( F `  x )
)  =  ( G `
 x ) )
7371, 72, 54rspcdva 2835 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  (
n  +  1 ) ) )  =  ( G `  ( n  +  1 ) ) )
7473oveq2d 5858 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( H `  ( F `
 ( n  + 
1 ) ) ) )  =  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( G `  ( n  +  1 ) ) ) )
7542, 68, 743eqtrd 2202 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( H `  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) )  =  ( ( H `
 (  seq M
(  .+  ,  F
) `  n )
) Q ( G `
 ( n  + 
1 ) ) ) )
7632adantlr 469 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
7733adantlr 469 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
7838, 76, 77seq3p1 10397 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M ( Q ,  G ) `  (
n  +  1 ) )  =  ( (  seq M ( Q ,  G ) `  n ) Q ( G `  ( n  +  1 ) ) ) )
7975, 78eqeq12d 2180 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) )  <->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) ) Q ( G `  ( n  +  1 ) ) )  =  ( (  seq M ( Q ,  G ) `  n ) Q ( G `  ( n  +  1 ) ) ) ) )
8037, 79syl5ibr 155 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n )  ->  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) ) ) )
8180expcom 115 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n )  ->  ( H `  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  ( n  +  1
) ) ) ) )
8281a2d 26 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  n
) )  =  (  seq M ( Q ,  G ) `  n ) )  -> 
( ph  ->  ( H `
 (  seq M
(  .+  ,  F
) `  ( n  +  1 ) ) )  =  (  seq M ( Q ,  G ) `  (
n  +  1 ) ) ) ) )
835, 9, 13, 17, 36, 82uzind4 9526 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) ) )
841, 83mpcom 36 1  |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `  N
) )  =  (  seq M ( Q ,  G ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842   1c1 7754    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  seqfeq3  10447  seq3distr  10448  efcj  11614
  Copyright terms: Public domain W3C validator