ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs Unicode version

Theorem iserabs 11416
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1  |-  Z  =  ( ZZ>= `  M )
iserabs.2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
iserabs.3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
iserabs.5  |-  ( ph  ->  M  e.  ZZ )
iserabs.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
iserabs.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
iserabs  |-  ( ph  ->  ( abs `  A
)  <_  B )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem iserabs
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iserabs.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 iserabs.2 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 zex 9200 . . . . . . 7  |-  ZZ  e.  _V
5 uzssz 9485 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
64, 5ssexi 4120 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
71, 6eqeltri 2239 . . . . 5  |-  Z  e. 
_V
87mptex 5711 . . . 4  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  e.  _V
98a1i 9 . . 3  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  e. 
_V )
10 iserabs.6 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
111, 2, 10serf 10409 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1211ffvelrnda 5620 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  CC )
13 simpr 109 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1412abscld 11123 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  e.  RR )
15 2fveq3 5491 . . . . 5  |-  ( m  =  n  ->  ( abs `  (  seq M
(  +  ,  F
) `  m )
)  =  ( abs `  (  seq M (  +  ,  F ) `
 n ) ) )
16 eqid 2165 . . . . 5  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  =  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )
1715, 16fvmptg 5562 . . . 4  |-  ( ( n  e.  Z  /\  ( abs `  (  seq M (  +  ,  F ) `  n
) )  e.  RR )  ->  ( ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
1813, 14, 17syl2anc 409 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
191, 3, 9, 2, 12, 18climabs 11261 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  ~~>  ( abs `  A ) )
20 iserabs.3 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
2118, 14eqeltrd 2243 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  e.  RR )
22 iserabs.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
2310abscld 11123 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
2422, 23eqeltrd 2243 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
251, 2, 24serfre 10410 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
2625ffvelrnda 5620 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  e.  RR )
272adantr 274 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  M  e.  ZZ )
28 eluzelz 9475 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
2928, 1eleq2s 2261 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ZZ )
3029adantl 275 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ZZ )
3127, 30fzfigd 10366 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( M ... n )  e. 
Fin )
32 elfzuz 9956 . . . . . . . 8  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
3332, 1eleqtrrdi 2260 . . . . . . 7  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
3433, 10sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... n ) )  ->  ( F `  k )  e.  CC )
3534adantlr 469 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
3631, 35fsumabs 11406 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  <_  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
) )
37 eqidd 2166 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
381eleq2i 2233 . . . . . . . 8  |-  ( n  e.  Z  <->  n  e.  ( ZZ>= `  M )
)
3938biimpi 119 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ( ZZ>= `  M )
)
4039adantl 275 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
411eleq2i 2233 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4241, 10sylan2br 286 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4342adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4437, 40, 43fsum3ser 11338 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( F `  k )  =  (  seq M (  +  ,  F ) `  n ) )
4544fveq2d 5490 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
4622adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
4741, 46sylan2br 286 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( abs `  ( F `
 k ) ) )
4823adantlr 469 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
4941, 48sylan2br 286 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5049recnd 7927 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
5147, 40, 50fsum3ser 11338 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
)  =  (  seq M (  +  ,  G ) `  n
) )
5236, 45, 513brtr3d 4013 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  <_  (  seq M (  +  ,  G ) `  n
) )
5318, 52eqbrtrd 4004 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  <_  (  seq M (  +  ,  G ) `  n
) )
541, 2, 19, 20, 21, 26, 53climle 11275 1  |-  ( ph  ->  ( abs `  A
)  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752    + caddc 7756    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380   abscabs 10939    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  eftlub  11631
  Copyright terms: Public domain W3C validator