ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs Unicode version

Theorem iserabs 11237
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1  |-  Z  =  ( ZZ>= `  M )
iserabs.2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
iserabs.3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
iserabs.5  |-  ( ph  ->  M  e.  ZZ )
iserabs.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
iserabs.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
iserabs  |-  ( ph  ->  ( abs `  A
)  <_  B )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem iserabs
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iserabs.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 iserabs.2 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 zex 9056 . . . . . . 7  |-  ZZ  e.  _V
5 uzssz 9338 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
64, 5ssexi 4061 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
71, 6eqeltri 2210 . . . . 5  |-  Z  e. 
_V
87mptex 5639 . . . 4  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  e.  _V
98a1i 9 . . 3  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  e. 
_V )
10 iserabs.6 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
111, 2, 10serf 10240 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1211ffvelrnda 5548 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  CC )
13 simpr 109 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1412abscld 10946 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  e.  RR )
15 2fveq3 5419 . . . . 5  |-  ( m  =  n  ->  ( abs `  (  seq M
(  +  ,  F
) `  m )
)  =  ( abs `  (  seq M (  +  ,  F ) `
 n ) ) )
16 eqid 2137 . . . . 5  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  =  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )
1715, 16fvmptg 5490 . . . 4  |-  ( ( n  e.  Z  /\  ( abs `  (  seq M (  +  ,  F ) `  n
) )  e.  RR )  ->  ( ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
1813, 14, 17syl2anc 408 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
191, 3, 9, 2, 12, 18climabs 11082 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  ~~>  ( abs `  A ) )
20 iserabs.3 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
2118, 14eqeltrd 2214 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  e.  RR )
22 iserabs.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
2310abscld 10946 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
2422, 23eqeltrd 2214 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
251, 2, 24serfre 10241 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
2625ffvelrnda 5548 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  e.  RR )
272adantr 274 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  M  e.  ZZ )
28 eluzelz 9328 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
2928, 1eleq2s 2232 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ZZ )
3029adantl 275 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ZZ )
3127, 30fzfigd 10197 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( M ... n )  e. 
Fin )
32 elfzuz 9795 . . . . . . . 8  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
3332, 1eleqtrrdi 2231 . . . . . . 7  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
3433, 10sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... n ) )  ->  ( F `  k )  e.  CC )
3534adantlr 468 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
3631, 35fsumabs 11227 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  <_  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
) )
37 eqidd 2138 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
381eleq2i 2204 . . . . . . . 8  |-  ( n  e.  Z  <->  n  e.  ( ZZ>= `  M )
)
3938biimpi 119 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ( ZZ>= `  M )
)
4039adantl 275 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
411eleq2i 2204 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4241, 10sylan2br 286 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4342adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4437, 40, 43fsum3ser 11159 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( F `  k )  =  (  seq M (  +  ,  F ) `  n ) )
4544fveq2d 5418 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
4622adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
4741, 46sylan2br 286 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( abs `  ( F `
 k ) ) )
4823adantlr 468 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
4941, 48sylan2br 286 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5049recnd 7787 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
5147, 40, 50fsum3ser 11159 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
)  =  (  seq M (  +  ,  G ) `  n
) )
5236, 45, 513brtr3d 3954 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  <_  (  seq M (  +  ,  G ) `  n
) )
5318, 52eqbrtrd 3945 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  <_  (  seq M (  +  ,  G ) `  n
) )
541, 2, 19, 20, 21, 26, 53climle 11096 1  |-  ( ph  ->  ( abs `  A
)  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2681   class class class wbr 3924    |-> cmpt 3984   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612    + caddc 7616    <_ cle 7794   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783    seqcseq 10211   abscabs 10762    ~~> cli 11040   sum_csu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116
This theorem is referenced by:  eftlub  11385
  Copyright terms: Public domain W3C validator