ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs Unicode version

Theorem iserabs 11972
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1  |-  Z  =  ( ZZ>= `  M )
iserabs.2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
iserabs.3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
iserabs.5  |-  ( ph  ->  M  e.  ZZ )
iserabs.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
iserabs.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
iserabs  |-  ( ph  ->  ( abs `  A
)  <_  B )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem iserabs
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iserabs.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 iserabs.2 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 zex 9443 . . . . . . 7  |-  ZZ  e.  _V
5 uzssz 9730 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
64, 5ssexi 4221 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
71, 6eqeltri 2302 . . . . 5  |-  Z  e. 
_V
87mptex 5858 . . . 4  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  e.  _V
98a1i 9 . . 3  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  e. 
_V )
10 iserabs.6 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
111, 2, 10serf 10692 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1211ffvelcdmda 5763 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  CC )
13 simpr 110 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1412abscld 11678 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  e.  RR )
15 2fveq3 5628 . . . . 5  |-  ( m  =  n  ->  ( abs `  (  seq M
(  +  ,  F
) `  m )
)  =  ( abs `  (  seq M (  +  ,  F ) `
 n ) ) )
16 eqid 2229 . . . . 5  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  =  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )
1715, 16fvmptg 5703 . . . 4  |-  ( ( n  e.  Z  /\  ( abs `  (  seq M (  +  ,  F ) `  n
) )  e.  RR )  ->  ( ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
1813, 14, 17syl2anc 411 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
191, 3, 9, 2, 12, 18climabs 11817 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  ~~>  ( abs `  A ) )
20 iserabs.3 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
2118, 14eqeltrd 2306 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  e.  RR )
22 iserabs.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
2310abscld 11678 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
2422, 23eqeltrd 2306 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
251, 2, 24serfre 10693 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
2625ffvelcdmda 5763 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  e.  RR )
272adantr 276 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  M  e.  ZZ )
28 eluzelz 9719 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
2928, 1eleq2s 2324 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ZZ )
3029adantl 277 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ZZ )
3127, 30fzfigd 10640 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( M ... n )  e. 
Fin )
32 elfzuz 10205 . . . . . . . 8  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
3332, 1eleqtrrdi 2323 . . . . . . 7  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
3433, 10sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... n ) )  ->  ( F `  k )  e.  CC )
3534adantlr 477 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
3631, 35fsumabs 11962 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  <_  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
) )
37 eqidd 2230 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
381eleq2i 2296 . . . . . . . 8  |-  ( n  e.  Z  <->  n  e.  ( ZZ>= `  M )
)
3938biimpi 120 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ( ZZ>= `  M )
)
4039adantl 277 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
411eleq2i 2296 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4241, 10sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4342adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4437, 40, 43fsum3ser 11894 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( F `  k )  =  (  seq M (  +  ,  F ) `  n ) )
4544fveq2d 5627 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
4622adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
4741, 46sylan2br 288 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( abs `  ( F `
 k ) ) )
4823adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
4941, 48sylan2br 288 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5049recnd 8163 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
5147, 40, 50fsum3ser 11894 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
)  =  (  seq M (  +  ,  G ) `  n
) )
5236, 45, 513brtr3d 4113 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  <_  (  seq M (  +  ,  G ) `  n
) )
5318, 52eqbrtrd 4104 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  <_  (  seq M (  +  ,  G ) `  n
) )
541, 2, 19, 20, 21, 26, 53climle 11831 1  |-  ( ph  ->  ( abs `  A
)  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4082    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994   CCcc 7985   RRcr 7986    + caddc 7990    <_ cle 8170   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192    seqcseq 10656   abscabs 11494    ~~> cli 11775   sum_csu 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851
This theorem is referenced by:  eftlub  12187
  Copyright terms: Public domain W3C validator