| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iserabs | Unicode version | ||
| Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.) | 
| Ref | Expression | 
|---|---|
| iserabs.1 | 
 | 
| iserabs.2 | 
 | 
| iserabs.3 | 
 | 
| iserabs.5 | 
 | 
| iserabs.6 | 
 | 
| iserabs.7 | 
 | 
| Ref | Expression | 
|---|---|
| iserabs | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iserabs.1 | 
. 2
 | |
| 2 | iserabs.5 | 
. 2
 | |
| 3 | iserabs.2 | 
. . 3
 | |
| 4 | zex 9335 | 
. . . . . . 7
 | |
| 5 | uzssz 9621 | 
. . . . . . 7
 | |
| 6 | 4, 5 | ssexi 4171 | 
. . . . . 6
 | 
| 7 | 1, 6 | eqeltri 2269 | 
. . . . 5
 | 
| 8 | 7 | mptex 5788 | 
. . . 4
 | 
| 9 | 8 | a1i 9 | 
. . 3
 | 
| 10 | iserabs.6 | 
. . . . 5
 | |
| 11 | 1, 2, 10 | serf 10575 | 
. . . 4
 | 
| 12 | 11 | ffvelcdmda 5697 | 
. . 3
 | 
| 13 | simpr 110 | 
. . . 4
 | |
| 14 | 12 | abscld 11346 | 
. . . 4
 | 
| 15 | 2fveq3 5563 | 
. . . . 5
 | |
| 16 | eqid 2196 | 
. . . . 5
 | |
| 17 | 15, 16 | fvmptg 5637 | 
. . . 4
 | 
| 18 | 13, 14, 17 | syl2anc 411 | 
. . 3
 | 
| 19 | 1, 3, 9, 2, 12, 18 | climabs 11485 | 
. 2
 | 
| 20 | iserabs.3 | 
. 2
 | |
| 21 | 18, 14 | eqeltrd 2273 | 
. 2
 | 
| 22 | iserabs.7 | 
. . . . 5
 | |
| 23 | 10 | abscld 11346 | 
. . . . 5
 | 
| 24 | 22, 23 | eqeltrd 2273 | 
. . . 4
 | 
| 25 | 1, 2, 24 | serfre 10576 | 
. . 3
 | 
| 26 | 25 | ffvelcdmda 5697 | 
. 2
 | 
| 27 | 2 | adantr 276 | 
. . . . . 6
 | 
| 28 | eluzelz 9610 | 
. . . . . . . 8
 | |
| 29 | 28, 1 | eleq2s 2291 | 
. . . . . . 7
 | 
| 30 | 29 | adantl 277 | 
. . . . . 6
 | 
| 31 | 27, 30 | fzfigd 10523 | 
. . . . 5
 | 
| 32 | elfzuz 10096 | 
. . . . . . . 8
 | |
| 33 | 32, 1 | eleqtrrdi 2290 | 
. . . . . . 7
 | 
| 34 | 33, 10 | sylan2 286 | 
. . . . . 6
 | 
| 35 | 34 | adantlr 477 | 
. . . . 5
 | 
| 36 | 31, 35 | fsumabs 11630 | 
. . . 4
 | 
| 37 | eqidd 2197 | 
. . . . . 6
 | |
| 38 | 1 | eleq2i 2263 | 
. . . . . . . 8
 | 
| 39 | 38 | biimpi 120 | 
. . . . . . 7
 | 
| 40 | 39 | adantl 277 | 
. . . . . 6
 | 
| 41 | 1 | eleq2i 2263 | 
. . . . . . . 8
 | 
| 42 | 41, 10 | sylan2br 288 | 
. . . . . . 7
 | 
| 43 | 42 | adantlr 477 | 
. . . . . 6
 | 
| 44 | 37, 40, 43 | fsum3ser 11562 | 
. . . . 5
 | 
| 45 | 44 | fveq2d 5562 | 
. . . 4
 | 
| 46 | 22 | adantlr 477 | 
. . . . . 6
 | 
| 47 | 41, 46 | sylan2br 288 | 
. . . . 5
 | 
| 48 | 23 | adantlr 477 | 
. . . . . . 7
 | 
| 49 | 41, 48 | sylan2br 288 | 
. . . . . 6
 | 
| 50 | 49 | recnd 8055 | 
. . . . 5
 | 
| 51 | 47, 40, 50 | fsum3ser 11562 | 
. . . 4
 | 
| 52 | 36, 45, 51 | 3brtr3d 4064 | 
. . 3
 | 
| 53 | 18, 52 | eqbrtrd 4055 | 
. 2
 | 
| 54 | 1, 2, 19, 20, 21, 26, 53 | climle 11499 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: eftlub 11855 | 
| Copyright terms: Public domain | W3C validator |