ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs Unicode version

Theorem iserabs 11657
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1  |-  Z  =  ( ZZ>= `  M )
iserabs.2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
iserabs.3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
iserabs.5  |-  ( ph  ->  M  e.  ZZ )
iserabs.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
iserabs.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
iserabs  |-  ( ph  ->  ( abs `  A
)  <_  B )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem iserabs
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iserabs.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 iserabs.2 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 zex 9352 . . . . . . 7  |-  ZZ  e.  _V
5 uzssz 9638 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
64, 5ssexi 4172 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
71, 6eqeltri 2269 . . . . 5  |-  Z  e. 
_V
87mptex 5791 . . . 4  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  e.  _V
98a1i 9 . . 3  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  e. 
_V )
10 iserabs.6 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
111, 2, 10serf 10592 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1211ffvelcdmda 5700 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  CC )
13 simpr 110 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1412abscld 11363 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  e.  RR )
15 2fveq3 5566 . . . . 5  |-  ( m  =  n  ->  ( abs `  (  seq M
(  +  ,  F
) `  m )
)  =  ( abs `  (  seq M (  +  ,  F ) `
 n ) ) )
16 eqid 2196 . . . . 5  |-  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )  =  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) )
1715, 16fvmptg 5640 . . . 4  |-  ( ( n  e.  Z  /\  ( abs `  (  seq M (  +  ,  F ) `  n
) )  e.  RR )  ->  ( ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `
 m ) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
1813, 14, 17syl2anc 411 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
191, 3, 9, 2, 12, 18climabs 11502 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) )  ~~>  ( abs `  A ) )
20 iserabs.3 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
2118, 14eqeltrd 2273 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  e.  RR )
22 iserabs.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
2310abscld 11363 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
2422, 23eqeltrd 2273 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
251, 2, 24serfre 10593 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
2625ffvelcdmda 5700 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  e.  RR )
272adantr 276 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  M  e.  ZZ )
28 eluzelz 9627 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
2928, 1eleq2s 2291 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ZZ )
3029adantl 277 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ZZ )
3127, 30fzfigd 10540 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( M ... n )  e. 
Fin )
32 elfzuz 10113 . . . . . . . 8  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
3332, 1eleqtrrdi 2290 . . . . . . 7  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
3433, 10sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... n ) )  ->  ( F `  k )  e.  CC )
3534adantlr 477 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
3631, 35fsumabs 11647 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  <_  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
) )
37 eqidd 2197 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
381eleq2i 2263 . . . . . . . 8  |-  ( n  e.  Z  <->  n  e.  ( ZZ>= `  M )
)
3938biimpi 120 . . . . . . 7  |-  ( n  e.  Z  ->  n  e.  ( ZZ>= `  M )
)
4039adantl 277 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
411eleq2i 2263 . . . . . . . 8  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
4241, 10sylan2br 288 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4342adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
4437, 40, 43fsum3ser 11579 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( F `  k )  =  (  seq M (  +  ,  F ) `  n ) )
4544fveq2d 5565 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  sum_ k  e.  ( M ... n ) ( F `  k
) )  =  ( abs `  (  seq M (  +  ,  F ) `  n
) ) )
4622adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
4741, 46sylan2br 288 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( abs `  ( F `
 k ) ) )
4823adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
4941, 48sylan2br 288 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5049recnd 8072 . . . . 5  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
5147, 40, 50fsum3ser 11579 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  ( M ... n
) ( abs `  ( F `  k )
)  =  (  seq M (  +  ,  G ) `  n
) )
5236, 45, 513brtr3d 4065 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( abs `  (  seq M
(  +  ,  F
) `  n )
)  <_  (  seq M (  +  ,  G ) `  n
) )
5318, 52eqbrtrd 4056 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (
( m  e.  Z  |->  ( abs `  (  seq M (  +  ,  F ) `  m
) ) ) `  n )  <_  (  seq M (  +  ,  G ) `  n
) )
541, 2, 19, 20, 21, 26, 53climle 11516 1  |-  ( ph  ->  ( abs `  A
)  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895    + caddc 7899    <_ cle 8079   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556   abscabs 11179    ~~> cli 11460   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  eftlub  11872
  Copyright terms: Public domain W3C validator